山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (10): 82-87.doi: 10.6040/j.issn.1671-9352.0.2018.134
张莹1,曹小红1*,戴磊2
ZHANG Ying1, CAO Xiao-hong1*, DAI Lei2
摘要: 令H为复的无限维可分的Hilbert空间, B(H)为H上有界线性算子的全体。称算子T∈B(H)满足Weyl定理, 若σ(T)\σw(T)=π00(T), 其中σ(T)和σw(T)分别表示算子T的谱集与Weyl谱, π00(T)={λ∈iso σ(T):0
中图分类号:
[1] | WEYL H V. Über beschränkte quadratische Formen, deren Differenz vollstetig ist[J]. Rendiconti Del Circolo Matematico Di Palermo, 1909, 27(1):373-392. |
[2] | BERBERIAN S K. An extension of Weyls theorem to a class of not necessarily normal operators[J]. Michigan Mathematical Journal, 1969, 16(3):273-279. |
[3] | LI Chunguang, ZHU Sen, FENG Youling. Weyls theorem for functions of operators and approximation[J]. Integral Equations and Operator Theory, 2010, 67(4):481-497. |
[4] | CURTO R E, HAN Y M. Weyls theorem for algebraically paranormal operators[J]. Integral Equations and Operator Theory, 2003, 47(3):307-341. |
[5] | AN I J, HAN Y M. Weyls theorem for algebraically quasi-class a operators[J]. Integral Equations and Operator Theory, 2008, 62(1):1-10. |
[6] | SHI Weijuan, CAO Xiaohong. Weyls theorem for the square of operator and perturbations[J]. Communications in Contemporary Mathematics, 2015, 17:1450042. |
[7] | COBURN L A. Weyls theorem for nonnormal operators[J]. Michigan Mathematical Journal, 1966, 13(3):285-288. |
[8] | DUGGAL B P. The Weyl spectrum of p-hyponormal operators[J]. Integral Equations and Operator Theory, 1997, 29(2):197-201. |
[9] | CAO Xiaohong. Analytically class operators and Weyls theorem[J]. Journal of Mathematical Analysis and Applications, 2006, 320(2):795-803. |
[10] | DUNFORD N. Spectral operator[J]. Pacific Journal of Mathematics, 1954, 4(3):321-354. |
[11] | FINCH J K. The single valued extension property on a Banach space[J]. Pacific Journal of Mathematics, 1975, 58(1):61-69. |
[12] | ZHU Sen, LI Chunguang. SVEP and compact perturbations[J]. Journal of Mathematical Analysis and Applications, 2011, 380(1):69-75. |
[13] | Aiena P, Peña P. Variantions on Weyls theorem[J]. Journal of Mathematical Analysis and Applications, 2006, 324(1):566-579. |
[14] | AMOUCH M. Weyl type theorem for operators satisfying the single-valued extention property[J]. Journal of Mathematical Analysis and Applications, 2007, 326(2):1476-1484. |
[15] | DUGGAL B P. Upper triangular operator matrices, SVEP and Browder, Weyl theorems[J]. Integral Equations and Operator Theory, 2009, 63(1):17-28. |
[16] | 江泽坚, 吴智泉, 纪友清. 实变函数论[M]. 3版. 北京: 高等教育出版社, 2007: 17-42. JIANG Zejian, WU Zhiquan, JI Youqing. Real variable function theory[M]. 3rd ed. Beijing: Higher Education Press, 2007: 17-42. |
[17] | TAYLOR A E. Theorems on ascent, descent, nullity and defect of linear operators[J]. Mathematische Annalen, 1996, 163(1):18-49. |
[1] | 刘艳芳,王玉玉. Adams谱序列E2项的一些注记[J]. 山东大学学报(理学版), 2018, 53(8): 43-48. |
[2] | 于倩倩,魏广生. Jacobi矩阵的逆谱问题及其应用[J]. 山东大学学报(理学版), 2018, 53(8): 66-76. |
[3] | 林穗华. Wolfe线搜索下的修正FR谱共轭梯度法[J]. 山东大学学报(理学版), 2017, 52(4): 6-12. |
[4] | 宋佳佳,曹小红,戴磊. 上三角算子矩阵SVEP微小紧摄动的判定[J]. 山东大学学报(理学版), 2017, 52(4): 61-67. |
[5] | 戴磊,曹小红. (z)性质与Weyl型定理[J]. 山东大学学报(理学版), 2017, 52(2): 60-65. |
[6] | 孔莹莹,曹小红,戴磊. a-Weyl定理的判定及其摄动[J]. 山东大学学报(理学版), 2017, 52(10): 77-83. |
[7] | 王国辉, 杜小妮, 万韫琦, 李芝霞. 周期为pq的平衡四元广义分圆序列的线性复杂度[J]. 山东大学学报(理学版), 2016, 51(9): 145-150. |
[8] | 董炯,曹小红. 算子立方的Weyl定理及其紧摄动[J]. 山东大学学报(理学版), 2016, 51(8): 15-21. |
[9] | 刘玉梅,王海蓉,刘淑芳. 荧光光谱法研究羟基化单壁碳纳米管与牛血清白蛋白/血红蛋白的相互作用[J]. 山东大学学报(理学版), 2016, 51(3): 29-33. |
[10] | 马飞翔,廖祥文,於志勇,吴运兵,陈国龙. 基于知识图谱的文本观点检索方法[J]. 山东大学学报(理学版), 2016, 51(11): 33-40. |
[11] | 吴学俪, 曹小红, 张敏. 有界线性算子的单值扩张性质的摄动[J]. 山东大学学报(理学版), 2015, 50(12): 5-9. |
[12] | 杨功林, 纪培胜. Hilbert C*-模中本原理想子模的一些性质[J]. 山东大学学报(理学版), 2014, 49(10): 50-55. |
[13] | 崔苗苗, 王碧玉, 曹小红. 算子矩阵的一个注记[J]. 山东大学学报(理学版), 2014, 49(10): 56-61. |
[14] | 李超,赵丽娟,张瑶,任冬梅*. HPLC法直接拆分dracocephins A对映异构体[J]. 山东大学学报(理学版), 2014, 49(1): 36-38. |
[15] | 赵军胜1,2,王秀丽1,2,高明伟1,2,王家宝1,2,王永翠1,2,陈莹1,2,姜辉1,2,杨静1,2,王留明1,2*. 红花性状标记杂交棉新品种鲁05H9 SSR#br# 指纹图谱构建及应用[J]. 山东大学学报(理学版), 2014, 49(1): 44-49. |
|