您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (8): 1-9.doi: 10.6040/j.issn.1671-9352.0.2016.450

• •    下一篇

集值函数关于模糊测度Choquet积分的表示和积分原函数性质

巩增泰,寇旭阳   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 收稿日期:2016-09-23 出版日期:2017-08-20 发布日期:2017-08-03
  • 作者简介:巩增泰(1966— )男, 博士, 教授, 研究方向为实分析、模糊分析学、粗糙集理论. E-mail:gongzt@nwnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11461062,61262022)

Representation of Choquet integral of the set-valued functions with respect to fuzzy measures and the characteristic of its primitive

GONG Zeng-tai, KOU Xu-yang   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Received:2016-09-23 Online:2017-08-20 Published:2017-08-03

摘要: 研究了集值函数关于模糊测度Choquet积分的分析性质: 讨论了集值函数Choquet积分的计算方法, 给出了集值函数Choquet积分的表示定理和Radon-Nikodym性质, 并且对集值函数Choquet积分的原函数进行了刻划。最后, 对集值函数关于模糊测度Choquet积分定义进行了改进, 提出了集值函数 “上方函数” 和 “下方函数” 概念, 实现了对集值函数关于模糊测度的Choquet积分的控制。

关键词: 模糊测度, Choquet积分, 集值函数

Abstract: The analytic properties of the Choquet integral of set-valued functions with respect to fuzzy measures are discussed, such as the characteristics of the primitive, representation of integral, differentiability of the primitive, and so on. Firstly, based on the previous results, the calculation of Choquet integral of set-valued function is investigated, and a representation theorem of Choquet integral for set-valued function is obtained as a Radon-Nikodym property in some sense. In addition, the characteristics of the primitive of the Choquet integral for set valued functions are given. Finally, the definition of the Choquet integral of set-valued functions with respect to fuzzy measures is improved, and the concepts of the above functions and below function of the set-valued functions are proposed, which achieved the domination of the Choquet integral of set-valued functions with respect to fuzzy measures.

Key words: set-valued functions, fuzzy measure, Choquet integral

中图分类号: 

  • O175.8
[1] CHOQUET G. Theory of capacities[J]. Annales de linstitut Fourier, 1955, 5:131-295.
[2] MUROFUSHI T, SUGENO M. An integral of fuzzy measures and the Choquet integral as integral with respect to a fuzzy measure[J]. Fuzzy Sets and Systems, 1989, 29(2):201-227.
[3] TORRA V, NARUKAWA Y. Numerical integration for the Choquet integral[J]. Information Fusion, 2016, 31(1):137-145.
[4] NARUKAWA Y, TORRA V, SUGENO M. Choquet integral with respect to a symmetric fuzzy measure of a function on the real line[J]. Ann Oper Res, 2016, doi: 10.1007/s10479-012-1166-6.
[5] GRABISCH M, MUROFUSHI T. Fuzzy measures and integrals[M] // Theory and Applications. Heidelberg: Physica-verlag, 2000.
[6] JANG L C, KWON J S. On the represtentation of Choquet of set-valued functions and null set[J]. Fuzzy Sets and Systems, 2000, 112(2):233-239.
[7] SUGENO M. A note on derivatives of functions with respect to fuzzy measures[J]. Fuzzy Sets and Systems, 2013, 222(1):1-17.
[8] ZHANG Deli, WANG Zixiao. On set-valued fuzzy integrals[J]. Fuzzy Sets and Systems, 1993, 56(2):237-241.
[9] JANG L C, KIL B M, KWON J S. Some properties of Choquet integrals of set-valued functions[J]. Fuzzy Sets and Systems, 1997, 91(1):95-98.
[10] HUANG Yan, WU Congxin. Real-valued Choquet integral for set-valued mappings[J]. International Journal of Approximate Reasoning, 2014, 55(2):683-688.
[11] LIAMAZARES B. Constructing Choquet integral-based operators that generalize weighted means and OWA operators[J]. Information Fusion, 2015, 23(1):131-138.
[12] MENG Fanyong, ZHANG Qiang. Induced continuous Choquet integral operators and their application to group decision making[J]. Computers and Industrial Engineering, 2014, 68(1):42-53.
[13] AUMANN R J. Integrals of set-valued functions[J]. Journal of Mathematical Analysis and Applications, 1965, 12(1):1-12.
[14] 巩增泰, 魏朝琦. 集值函数关于非可加集值测度的Choquet积分[J]. 山东大学学报(理学版), 2015, 50(8):63-71. GONG Zengtai, WEI Zhaoqi. Choquet integral of set-valued functions with respect to multisubmeasures[J]. Journal of Shandong University(Natural Science), 2015, 50(8):63-71.
[15] 吴从炘, 马明. 模糊分析学基础[M]. 北京: 国防工业出版社, 1991. WU Congxin, MA Ming. The foundament of fuzzy analysis[M]. Beijing: National Defense Industry Press, 1991.
[16] LI Jun. Order continuity of monotone set function and convergence of measurable functions sequence[J]. Applied Mathematics and Computation, 2003, 135(2-3):211-218.
[17] YAO Ouyang, LI Jun. Some properties of monotone set functions defined by Choquet integral[J]. Journal of Southeast University, 2003, 19(4):424-427.
[1] 巩增泰, 魏朝琦. 集值函数关于非可加集值测度的Choquet积分[J]. 山东大学学报(理学版), 2015, 50(08): 62-71.
[2] 杨莹,江龙*,索新丽. 容度空间上保费泛函的Choquet积分表示及相关性质[J]. J4, 2013, 48(1): 78-82.
[3] 张以欣,王贵君*,周立群. 集值模糊测度空间上的Egoroff定理[J]. J4, 2010, 45(5): 69-73.
[4] 巩增泰,谢婷. 模糊测度的广义可加性、转化定理和可加性估计[J]. J4, 2010, 45(10): 53-60.
[5] 李艳红. 模糊值函数序列的广义Egoroff定理[J]. J4, 2009, 44(4): 88-91 .
[6] 李艳红,王贵君 . 广义模糊值Choquet积分的强序连续与伪S性[J]. J4, 2008, 43(4): 76-80 .
[7] 章 玲,周德群 . λ模糊测度及其Mbius变换和关联系数间关系的推导[J]. J4, 2007, 42(7): 33-37 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!