您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (08): 62-71.doi: 10.6040/j.issn.1671-9352.0.2014.340

• 论文 • 上一篇    下一篇

集值函数关于非可加集值测度的Choquet积分

巩增泰, 魏朝琦   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 收稿日期:2014-07-02 出版日期:2015-08-20 发布日期:2015-07-31
  • 作者简介:巩增泰(1966- ), 男, 博士, 教授, 研究方向为实分析、模糊分析学和粗糙集理论. E-mail:gongzt@nwnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61262022, 11461062)

Choquet integral of set-valued functions with respect to multisubmeasures

GONG Zeng-tai, WEI Zhao-qi   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Received:2014-07-02 Online:2015-08-20 Published:2015-07-31

摘要: 按照集值积分的经典定义方法,不可避免地涉及集值函数和集值测度两方面的选择问题.本文利用集值函数关于非可加测度的实值Choquet积分,定义和讨论了集值函数关于非可加集值测度的Choquet积分,并刻画了其原函数性质.结果表明,弱零可加性、零可加性、凸零可加性、伪度量性质以及Darboux性质在其不定积分中均可遗传到其原函数中.

关键词: 集值测度, Choquet积分, 集值函数

Abstract: It is inevitable for the problem how to deal with two aspects of selections for a set-valued function and a multisubmeasure according to the classical definition method of the set-valued integral. The Choquet integral of a set-valued function with respect to a multisubmeasure is defined and discussed by using the real-valued Choquet integral of the set-valued function with respect to the non-additive measure, and some basic properties are characterized. It shows that a lot of characters could be well kept to their primitives such as the weakly null-additive, null-additive, converse null-additive, the pseudometric property and the Darboux property, and so on.

Key words: set-valued functions, multisubmeasures, Choquet integral

中图分类号: 

  • O175.8
[1] CHOQUET G. Theory of capacities[J]. Annals det Institut Fourier, 1955, 5:131-295.
[2] MUROFUSHI T, SUGENO M. An integral of fuzzy measures and the Choquet integral as integral with respect to a fuzzy measure[J]. Fuzzy Sets and Systems, 1989, 29(2):201-227.
[3] MUROFUSHI T, SUGENO M. A theory of fuzzy measures: representations, the Choquet integral, and null sets[J]. Journal of Mathematical Analysis and Applications, 1991, 159(2):532-549.
[4] JANG L C, KWON J S. On the represtentation of Choquet of set-valued functionsand null set[J]. Fuzzy Sets and Systems, 2000,112(2):233-239.
[5] ZHANG Deli, GUO Caimei. Fuzzy integrals of set-valued mappings and fuzzy mappings[J]. Fuzzy Sets and Systems, 1995, 75(1):103-109.
[6] GRABISCH M, MUROFUSHI T, SUGENO M. Fuzzy measures and integrals: theory and applications[M]. Heidelberg: Physica-verlag, 2000.
[7] GRABISC M, NGUYEN H T, WALKER E A. Fundamentals of uncertainty calculi with application to fuzzy inference[M]. Dordrecht: Kluwer Academic, 1995.
[8] WANG Zhengyuan, KWONG L, WONG M, et al. Nonlinear nonnegative multi-regressions based on Choquet integrals[J]. International Journal of Approximate Reasoning, 2000, 25(2):71-87.
[9] XU Kebin, WANG Zhengyuan, PHENG H, et al. Cliassificication by nonlinear integral projections[J]. IEEE Transactions on Fuzzy System, 2003, 11(2):187-201.
[10] HUANG Yan, WU Congxin. Real-valued Choquet integral for set-valued mappings[J]. International Journal of Approximate Reasoning, 2014, 55(2):683-688.
[11] ZHANG Deli, WANG Zixiao. On set-valued fuzzy integrals[J]. Fuzzy Sets and Systems, 1993, 56(2):237-241.
[12] 哈明虎, 吴从炘. 模糊测度与模糊积分理论[M]. 北京: 科学出版社, 1998. HA Minghu, WU Congxin. Fuzzy measure and fuzzy integral theory[M]. Beijing: Sciense Press, 1998.
[13] JANG L C, KIL B M, KIM Y K, et al. Some properties of Choquet integrals of set-valued functions[J]. Fuzzy Sets and Systems, 1997, 91(1):95-98.
[1] 巩增泰,寇旭阳. 集值函数关于模糊测度Choquet积分的表示和积分原函数性质[J]. 山东大学学报(理学版), 2017, 52(8): 1-9.
[2] 杨莹,江龙*,索新丽. 容度空间上保费泛函的Choquet积分表示及相关性质[J]. J4, 2013, 48(1): 78-82.
[3] 李艳红,王贵君 . 广义模糊值Choquet积分的强序连续与伪S性[J]. J4, 2008, 43(4): 76-80 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!