山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (10): 17-21.doi: 10.6040/j.issn.1671-9352.0.2017.576
郭寿桃,王占平
GUO Shou-tao, WANG Zhan-ping
摘要: 设R是具有单位元的交换Noether环,x是R上的正合零因子。研究了正合零因子下模的Gorenstein同调维数,证明了若M是Gorenstein投射(内射,平坦)R-模,则M/xM是Gorenstein投射(内射,平坦)R/xR-模,得到了有关维数的结论。对Ding投射(内射)R-模可得类似的结论。
中图分类号:
[1] | AUSLANDER M, BRIDGER M. Stable module theory[M]. Providence: Memoirs of the American Mathematical Society, 1969: 94. |
[2] | ENOCHS E E, JENDA O M G. Gorenstein injective and projective modules[J]. Mathematische Zeitschrift, 1995, 220(1):611-633. |
[3] | ENOCHS E E, JENDA O M G, TORRECILLAS B. Gorenstein flat modules[J]. Journal of Nanjing University-Math, 1993, 1:1-9. |
[4] | ENOCHS E E, JENDA O M G. Relative homological algebra[M]. Berlin: Walter de Gruyter, 2000. |
[5] | CHRISTENSEN L W. Gorenstein dimensions[J]. Lecture Notes in Mathematics, 2000, 1747. |
[6] | HOLM H. Gorenstein homological dimensions[J]. Journal of Pure and Applied Algebra, 2004, 189:167-193. |
[7] | HENRIQUES I B D A, ??塁EGA L M. Free resolutions over short Gorenstein local rings[J]. Mathematische Zeitschrift, 2010, 267:645-663. |
[8] | BERGH P A, CELIKBAS O, JORGENSEN D A. Homological algebra modulo exact zero-divisors[J]. Kyoto Journal of Mathematics, 2014, 54:879-895. |
[9] | DIBAEI M T, GHEIBI M. Sequence of exact zero-divisors[J]. Mathematics, 2011, 12:1-18. |
[10] | AMANZADEH E, DIBAEI M T. Auslander class, GC, and C-projective modules modulo exact zero-divisors[J]. Communications in Algebra, 2015, 43:4320-4333. |
[11] | DING Nanqing, LI Yuanlin, MAO Lixin. Strongly Gorenstein flat modules[J]. Journal of Australian Mathematical Society, 2009, 86(3):323-338. |
[12] | DING Nanqing, MAO Lixin. Gorenstein FP-injective and Gorenstein flat modules[J]. Journal of Algebra and Its Applications, 2008, 7(4):491-506. |
[13] | GILLESPIE J. Model structures on modules over Ding-Chen rings[J]. Homology Applications, 2010, 12(1):61-73. |
[14] | CHRISTENSEN L W. Semi-dualizing complexes and their Auslander categories[J]. Transactions of the American Mathematical Society, 2001, 353:1839-1883. |
[15] | ENOCHS E E, IZURDIAGA M C, TORRECILLAS B. Gorenstein conditions over triangular matrix rings[J]. Journal of Pure and Applied Algebra, 2014, 218:1544-1554. |
[16] | MAHDOU N, TAMEKKANE M. Strongly n-Gorenstein projective, injective and flat modules[J]. Journal of the Austrilian Mathematical Society, 2013, 87(3):395-407. |
[1] | 陈文倩,张孝金,昝立博. Gorenstein代数上的倾斜模的个数[J]. 山东大学学报(理学版), 2018, 53(10): 14-16. |
[2] | 卢博, 禄鹏. 复形的 FR-内射维数与 FR-平坦维数[J]. 山东大学学报(理学版), 2018, 53(6): 1-6. |
[3] | 杨春花. 关于复形的Gc-内射维数的一个注记[J]. 山东大学学报(理学版), 2017, 52(11): 82-86. |
[4] | 罗肖强,邢建民. Ding gr-内射模和Ding gr-平坦模[J]. 山东大学学报(理学版), 2017, 52(11): 87-91. |
[5] | 王小青,梁力. 强余挠模的忠实平坦余基变换[J]. 山东大学学报(理学版), 2017, 52(11): 92-94. |
[6] | 徐辉,赵志兵. 相对无挠模[J]. 山东大学学报(理学版), 2017, 52(8): 75-80. |
[7] | 陈秀丽,陈建龙. C-投射(内射,平坦)模与优越扩张[J]. 山东大学学报(理学版), 2017, 52(8): 85-89. |
[8] | 孙维昆,林汉兴. 单点扩张代数的表示维数[J]. 山东大学学报(理学版), 2016, 51(6): 85-91. |
[9] | 谢宗真,张孝金. 所有τ-刚性模是投射模的代数[J]. 山东大学学报(理学版), 2016, 51(2): 16-20. |
[10] | 程海霞,殷晓斌. Abelian范畴中Gorenstein内射对象[J]. 山东大学学报(理学版), 2016, 51(2): 79-84. |
[11] | 陈秀丽, 陈建龙. Hopf扩张下的余纯投射维数[J]. 山东大学学报(理学版), 2014, 49(10): 7-10. |
|