山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (11): 87-91.doi: 10.6040/j.issn.1671-9352.0.2017.140
罗肖强1,邢建民2*
LUO Xiao-qiang1, XING Jian-min2*
摘要: 引入Ding gr-内射与Ding gr-平坦模的概念, 研究Ding gr-内射模与Ding内射模以及Ding gr-内射模与Ding gr-平坦模的关系。
中图分类号:
[1] NASTASESCU C, VAN OYSTAEYEN F. Graded ring theory[M]. North-Holland: North-Holland Math Library 28, 1982. [2] AUSLANDER M, BRIDGER M. Stable module Theory[M]. Providence, Rhode Island: American Mathematical Society, 1969. [3] ENOCHS E E, JENDA O M G. Gorenstein injective and projective modules[J]. Math Z, 1995, 220(4):611-633. [4] ENOCHS E E, JENDA O M G. Relative homological algebra[M]. Berlin: Walter de Gruyter, 2000. [5] HOLM H. Gorenstein homological dimensions[J]. J Pure Appl Algebra, 2004, 189:167-193. [6] ASENSIO M J, LOPEZ-RAMOS J A, TORRECILLAS B. Gorenstein gr-injective and gr-projective modules[J]. Comm Algebra, 1998, 26(1):225-240. [7] ASENSIO M J, LOPEZ-RAMOS J A, TORRECILLAS B. Gorenstein gr-flat modules[J]. Comm Algebra, 1998, 26(10):3195-3209. [8] DING Nanqing, LI Yuanlin, MAO Lixin. Strongly Gorenstein flat modules[J]. J Aust Math Soc, 2009, 86:323-338. [9] MAO Lixin, DING Nanqing. Gorenstein FP-injective and Gorenstein flat modules[J]. J Algebra Appl, 2008, 7(4):491-506. [10] GILLESPIE J. Model structures on modules over Ding-Chen rings[J]. Homology, Homotopy Appl, 2010, 12(1):61-73. [11] ASENSIO M J, LOPEZ-RAMOS J A, TORRECILLAS B. FP-gr-injective modules and gr-FC rings[J]. Algebra and Number Theory, 1999, 206:1-11. [12] YANG Xiaoyan, LIU Zhongkui. FP-gr-injective modules[J]. Math J Okayama Univ, 2011, 53:83-100. [13] NASTASESCU C, VAN OYSTAEYEN F. Methods of graded rings[M]. Berlin: Springer, 2004. [14] NASTASESCU C. Strongly graded rings of finite groups[J]. Comm Algebra, 1983, 11(10):1033-1071. [15] GARCIA J R, LOPEZ-RAMOS J A, TORRECILLAS B. On the existence of flat covers in R-gr[J]. Comm Algebra, 2001, 29(8):3341-3349. |
[1] | 陈文倩,张孝金,昝立博. Gorenstein代数上的倾斜模的个数[J]. 山东大学学报(理学版), 2018, 53(10): 14-16. |
[2] | 郭寿桃,王占平. 正合零因子下模的Gorenstein同调维数[J]. 山东大学学报(理学版), 2018, 53(10): 17-21. |
[3] | 卢博, 禄鹏. 复形的 FR-内射维数与 FR-平坦维数[J]. 山东大学学报(理学版), 2018, 53(6): 1-6. |
[4] | 杨春花. 关于复形的Gc-内射维数的一个注记[J]. 山东大学学报(理学版), 2017, 52(11): 82-86. |
[5] | 王小青,梁力. 强余挠模的忠实平坦余基变换[J]. 山东大学学报(理学版), 2017, 52(11): 92-94. |
[6] | 徐辉,赵志兵. 相对无挠模[J]. 山东大学学报(理学版), 2017, 52(8): 75-80. |
[7] | 陈秀丽,陈建龙. C-投射(内射,平坦)模与优越扩张[J]. 山东大学学报(理学版), 2017, 52(8): 85-89. |
[8] | 孙维昆,林汉兴. 单点扩张代数的表示维数[J]. 山东大学学报(理学版), 2016, 51(6): 85-91. |
[9] | 谢宗真,张孝金. 所有τ-刚性模是投射模的代数[J]. 山东大学学报(理学版), 2016, 51(2): 16-20. |
[10] | 程海霞,殷晓斌. Abelian范畴中Gorenstein内射对象[J]. 山东大学学报(理学版), 2016, 51(2): 79-84. |
[11] | 陈秀丽, 陈建龙. Hopf扩张下的余纯投射维数[J]. 山东大学学报(理学版), 2014, 49(10): 7-10. |
|