山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (8): 85-89.doi: 10.6040/j.issn.1671-9352.0.2016.386
陈秀丽1,陈建龙2
CHEN Xiu-li1, CHEN Jian-long2
摘要: 令C作为R-模为半对偶模,其中R为交换环。在(几乎)优越扩张的条件下研究了与半对偶模C相关模类的传递性,讨论了C-投射,内射及平坦预盖及预包的相关性质。作为应用,证明了当环扩张S≥R为优越扩张时,R为诺特环当且仅当S为诺特环;R为凝聚环当且仅当S为凝聚环。
中图分类号:
[1] SATHER-WAGSTAFF S, SHARIF T, WHITE D. AB-contexts and stability for Gorenstein flat modules with respect to semidualizing modules[J]. Algebra Represent Theory, 2011, 14(3):403-428. [2] SATHER-WAGSTAFF S, SHARIF T, WHITE D. Tate cohomology with respect to semidualizing modules[J]. J Algebra, 2010, 324:2336-2368. [3] BONAMI L. On the structure of skew group rings[M] //Algebra Berichte, 48. Munich: Verlag Reinhard Fischer, 1984. [4] XUE Weimin. On almost excellent extensions[J]. Algebra Colloq, 1996(3):125-134. [5] CHRISTENSEN L W. Semi-dualizing complexes and their Auslander categories [J]. Trans Amer Math Soc, 2001, 353:1839-1883. [6] LIU Zhongkui. Excellent extensions and homological dimensions [J]. Comm Algebra, 1994, 22:1741-1745. [7] HUANG Zhaoyong, SUN Juxiang. Invariant properties of representations under excellent extensions [J]. J Algebra, 2012, 358(3): 87-101. [8] WANG Dingguo. Modules with flat socles and almost excellent extensions[J]. Acta Math Vietnam, 1996, 21(2): 295-301. [9] WHITE D. Gorenstein projective dimension with respect to a semidualizing module[J]. J Commut Algebra, 2010, 2(1):111-137. [10] HOLM H, WHITE D. Foxby equivalence over associative rings [J]. J Math Kyoto Univ, 2007, 47(4): 781-808. [11] JORGENSEN D A, LEUSCHKE G J, SATHER-WAGSTAFF S. Presentations of rings with nontrivial semidualizing modules[J]. Collect Math, 2012, 63: 165-180. [12] ENOCHS E E, JENDA O M G. Relative homological algebra[M]. Berlin: Walter de Gruyter, 2000. [13] CHEN Xiuli, CHEN Jianlong. Cotorsion dimensions relative to semidualizing modules[J]. J Algebra Appl, 2016, 15(6):16501041-165010414. [14] FANG Hongjin. Normalizing extensions and modules[J]. J Math Res Exp, 1992, 12(3): 401-406. [15] ZHANG Dongdong, OUYANG Baiyu. Semidualizing modules and related modules[J]. J Algebra Appl, 2011, 10(6):1261-1282. |
[1] | 郭寿桃,王占平. 正合零因子下模的Gorenstein同调维数[J]. 山东大学学报(理学版), 2018, 53(10): 17-21. |
[2] | 郭莹, 姚海楼. 多项式环的表现维数[J]. 山东大学学报(理学版), 2015, 50(04): 71-75. |
[3] | 陈文静,刘仲奎. 关于n-强 Gorenstein FP-内射模的注记[J]. 山东大学学报(理学版), 2014, 49(04): 50-54. |
|