您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (04): 71-75.doi: 10.6040/j.issn.1671-9352.0.2014.416

• 论文 • 上一篇    下一篇

多项式环的表现维数

郭莹, 姚海楼   

  1. 北京工业大学应用数理学院, 北京 100124
  • 收稿日期:2014-09-18 修回日期:2015-03-04 出版日期:2015-04-20 发布日期:2015-04-17
  • 作者简介:郭莹(1983-),女,博士研究生,研究方向为代数表示论.E-mail:gykyxx@emails.bjut.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11271119);北京市自然科学基金资助项目(1122002)

The presented dimensions of polynomial rings

GUO Ying, YAO Hai-lou   

  1. College of Applied Sciences, Beijing University of Technology, Beijing 100124, China
  • Received:2014-09-18 Revised:2015-03-04 Online:2015-04-20 Published:2015-04-17

摘要: R为有单位元的环,M为右R-模,通过研究多项式环上的表现维数,得到了当R,R[x]为凝聚环时,MRMR[x]的表现维数之间的关系以及RR[x]的表现维数之间的关系等结论.

关键词: 多项式环, 表现维数, 凝聚环

Abstract: Let R be a ring with a unit element, and M be a right R-Module. The relationship between FPd(MR) and FPd(MR[x]) as well as between FPD(R) and FPD(R[x]) are obtained by using the presented dimensions of polynomial rings, when R and R[x] are coherent rings.

Key words: polynomial ring, coherent ring, presented dimension

中图分类号: 

  • O153.3
[1] COSTA D L. Parameterizing families of non-noetherian rings[J]. Communications in Algebra, 1994, 22(10):3997-4011.
[2] XUE Weimin. On n-presented modules and almost excellent extensions[J]. Communications in Algebra, 1999, 27(3):1091-1102.
[3] ZHOU Dexu, GONG Zhiwei. On presented dimensions of modules and rings[J]. International Journal of Mathematics and Mathematical Sciences, 2010:1-13. doi: 10.1155/2010/256267.
[4] 李元林. 有限表现维数的换环定理[J]. 南京大学学报: 数学半年刊, 1990, 7(1):75-84. LI Yuanlin. Some theorems on chane of rings of the finitely presented dimension[J]. Journal of Nanjing University Mathematical Biquarterly, 1990, 7(1):75-84.
[5] 周伯壎. 同调代数[M]. 北京: 科学出版社, 1988. ZHOU Boxun. Homological algebra[M]. Beijing: Science Press, 1988.
[6] 程福长, 易忠. 环的同调维数[M]. 桂林: 广西师范大学出版社, 2000. CHENG Fuchang, YI Zhong. Homological dimension of rings[M]. Guilin: Guangxi Normal University Press, 2000.
[7] 李元林. F.P.-维数的合冲定理[J]. 数学研究与评论, 1993, 13(2): 283-288. LI Yuanlin. Syzygy theory of F.P.-dimension[J]. Journal of Mathematical Research and Exposition, 1993, 13(2):283-288.
[1] 陈秀丽,陈建龙. C-投射(内射,平坦)模与优越扩张[J]. 山东大学学报(理学版), 2017, 52(8): 85-89.
[2] 陈文静,刘仲奎. 关于n-强 Gorenstein FP-内射模的注记[J]. 山东大学学报(理学版), 2014, 49(04): 50-54.
[3] 张万儒. 斜诣零McCoy环[J]. 山东大学学报(理学版), 2014, 49(03): 57-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!