您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (10): 17-21.doi: 10.6040/j.issn.1671-9352.0.2017.576

• • 上一篇    下一篇

正合零因子下模的Gorenstein同调维数

郭寿桃,王占平   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 收稿日期:2017-11-07 出版日期:2018-10-20 发布日期:2018-10-09
  • 作者简介:郭寿桃(1990— ), 女, 硕士研究生, 研究方向为同调代数. E-mail:guoshoutao9022@163.com
  • 基金资助:
    国家自然科学基金资助项目(11561061)

Gorenstein homological dimensions of modules under exact zero-divisors

GUO Shou-tao, WANG Zhan-ping   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Received:2017-11-07 Online:2018-10-20 Published:2018-10-09

摘要: R是具有单位元的交换Noether环,xR上的正合零因子。研究了正合零因子下模的Gorenstein同调维数,证明了若M是Gorenstein投射(内射,平坦)R-,M/xM是Gorenstein投射(内射,平坦)R/xR-模,得到了有关维数的结论。对Ding投射(内射)R-模可得类似的结论。

关键词: 正合零因子, Gorenstein投射(内射,平坦)模, Gorenstein投射(内射,平坦)维数

Abstract: Let R be a commutative Noetherian ring with identity, x be an exact zero-divisor over R. Gorenstein homological dimensions of modules under exact zero-divisors are investigated. M/xM is Gorenstein projective(injective, flat)R/xR-module if M is Gorenstein projective(injective, flat)R-module, the results of corresponding dimensions are gained. The result can also be obtained for Ding projective(injective)R- modules.

Key words: Gorenstein projective(injective, flat)modules, Gorenstein projective(injective, flat)dimensions, exact zero-divisors

中图分类号: 

  • O154.2
[1] AUSLANDER M, BRIDGER M. Stable module theory[M]. Providence: Memoirs of the American Mathematical Society, 1969: 94.
[2] ENOCHS E E, JENDA O M G. Gorenstein injective and projective modules[J]. Mathematische Zeitschrift, 1995, 220(1):611-633.
[3] ENOCHS E E, JENDA O M G, TORRECILLAS B. Gorenstein flat modules[J]. Journal of Nanjing University-Math, 1993, 1:1-9.
[4] ENOCHS E E, JENDA O M G. Relative homological algebra[M]. Berlin: Walter de Gruyter, 2000.
[5] CHRISTENSEN L W. Gorenstein dimensions[J]. Lecture Notes in Mathematics, 2000, 1747.
[6] HOLM H. Gorenstein homological dimensions[J]. Journal of Pure and Applied Algebra, 2004, 189:167-193.
[7] HENRIQUES I B D A, ??塁EGA L M. Free resolutions over short Gorenstein local rings[J]. Mathematische Zeitschrift, 2010, 267:645-663.
[8] BERGH P A, CELIKBAS O, JORGENSEN D A. Homological algebra modulo exact zero-divisors[J]. Kyoto Journal of Mathematics, 2014, 54:879-895.
[9] DIBAEI M T, GHEIBI M. Sequence of exact zero-divisors[J]. Mathematics, 2011, 12:1-18.
[10] AMANZADEH E, DIBAEI M T. Auslander class, GC, and C-projective modules modulo exact zero-divisors[J]. Communications in Algebra, 2015, 43:4320-4333.
[11] DING Nanqing, LI Yuanlin, MAO Lixin. Strongly Gorenstein flat modules[J]. Journal of Australian Mathematical Society, 2009, 86(3):323-338.
[12] DING Nanqing, MAO Lixin. Gorenstein FP-injective and Gorenstein flat modules[J]. Journal of Algebra and Its Applications, 2008, 7(4):491-506.
[13] GILLESPIE J. Model structures on modules over Ding-Chen rings[J]. Homology Applications, 2010, 12(1):61-73.
[14] CHRISTENSEN L W. Semi-dualizing complexes and their Auslander categories[J]. Transactions of the American Mathematical Society, 2001, 353:1839-1883.
[15] ENOCHS E E, IZURDIAGA M C, TORRECILLAS B. Gorenstein conditions over triangular matrix rings[J]. Journal of Pure and Applied Algebra, 2014, 218:1544-1554.
[16] MAHDOU N, TAMEKKANE M. Strongly n-Gorenstein projective, injective and flat modules[J]. Journal of the Austrilian Mathematical Society, 2013, 87(3):395-407.
[1] 陈文倩,张孝金,昝立博. Gorenstein代数上的倾斜模的个数[J]. 山东大学学报(理学版), 2018, 53(10): 14-16.
[2] 卢博, 禄鹏. 复形的 FR-内射维数与 FR-平坦维数[J]. 山东大学学报(理学版), 2018, 53(6): 1-6.
[3] 杨春花. 关于复形的Gc-内射维数的一个注记[J]. 山东大学学报(理学版), 2017, 52(11): 82-86.
[4] 罗肖强,邢建民. Ding gr-内射模和Ding gr-平坦模[J]. 山东大学学报(理学版), 2017, 52(11): 87-91.
[5] 王小青,梁力. 强余挠模的忠实平坦余基变换[J]. 山东大学学报(理学版), 2017, 52(11): 92-94.
[6] 徐辉,赵志兵. 相对无挠模[J]. 山东大学学报(理学版), 2017, 52(8): 75-80.
[7] 陈秀丽,陈建龙. C-投射(内射,平坦)模与优越扩张[J]. 山东大学学报(理学版), 2017, 52(8): 85-89.
[8] 孙维昆,林汉兴. 单点扩张代数的表示维数[J]. 山东大学学报(理学版), 2016, 51(6): 85-91.
[9] 谢宗真,张孝金. 所有τ-刚性模是投射模的代数[J]. 山东大学学报(理学版), 2016, 51(2): 16-20.
[10] 程海霞,殷晓斌. Abelian范畴中Gorenstein内射对象[J]. 山东大学学报(理学版), 2016, 51(2): 79-84.
[11] 陈秀丽, 陈建龙. Hopf扩张下的余纯投射维数[J]. 山东大学学报(理学版), 2014, 49(10): 7-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!