山东大学学报 (理学版) ›› 2018, Vol. 53 ›› Issue (11): 67-77.doi: 10.6040/j.issn.1671-9352.1.2017.023
王鑫1,2,左万利2,3,朱枫彤3,王英2,3*
WANG Xin1,2, ZUO Wan-li2,3, ZHU Feng-tong3, WANG Ying2,3*
摘要: 复杂网络中内部的社区结构是复杂网络结构特征和属性特征的具体体现。首先依据模块度最大化理论计算网络的模块度矩阵的最大k特征向量矩阵;然后提出聚类中心方法,并用于求出k个社团的重要结点作为k聚类中心,利用欧几里得距离计算每一个结点到k个聚类中心的距离,将结点分配到距离聚类中心最近的社区中;最后对网络应用k-means方法进行迭代计算,得到k个社区的划分。分别在Karate Club Network和American College Football数据集上对算法进行了实验验证,实验结果表明该算法可以有效发现潜在社区,其纯度与模块度比已有的社区发现算法都有一定的提高,并且迭代次数较少,效率较高。
中图分类号:
[1] NEWMAN M E J. Fast algorithm for detecting community structure in networks[J]. Phys Rev E, 2004, 69(6):066133. Doi:10.1103/PhysRevE.69.060133. [2] SHEN H W, CHENG X Q. Spectral methods for the detection of network community structure: a comparative analysis[J]. Journal of Statistical Mechanics Theory & Experiment, 2010, 2010(10):10020. [3] WANG T S, LIN H T, WANG P. Weighted-spectral clustering algorithm for detecting community structures in complex networks[J]. Artificial Intelligence Review, 2017, 47(4):463-483. [4] CLAUSET A, NEWMAN M E J, MOORE C. Finding community structure in very large networks[J]. Phys Rev E, 2004, 70(6):066111. [5] WAKITA K, TSURUMI T. Finding community structure in mega-scale social networks[C] // Proceedings of the 16th International Conference on World Wide Web(WWW 2007). 2007:1275-1276. ArXiv: cs/0702048. [6] KIRKPATRICK S, GELATT C D, VECCHI M P. Optimization by simulated annealing[J]. Science, 1983, 220(4598):671-680. [7] GUIMERÀ R, SALES-PARDO M, AMARAL L A N. Modularity from fluctuations in random graphs and complex networks[J]. Phys Rev E, 2004, 70(2):025101. Doi:10.1103/PhysRevE.70.025/01. [8] GUIMERÀ R, AMARAL L A N. Functional cartography of complex metabolic networks[J]. Nature, 2005, 433(7028):895-900. [9] BOETTCHER S, PERCUS A G. Optimization with extremal dynamics[J]. Phys Rev Lett, 2001, 86(23):5211-5214. [10] DUCH J, ARENAS A. Community detection in complex networks using extremal optimization[J]. Phys Rev E, 2005, 72(2):027104. Doi:10.1103/PhysRevE.72.027104. [11] LI Z P, ZHANG S H, WANG R S, et al. Quantitative function for community detection[J]. Physical Review E, 2008, 77(3):036109. Doi:10.1103/PhysRevE.77.036109. [12] WANG G X, SHEN Y, OUYANG M. A vector partitioning approach to detecting community structure in complex networks[J]. Computer & Mathematics with Applications, 2008, 55(12):2746-2752. [13] WANG X, QIAN B, DAVIDSON I. On constrained spectral clustering and its applications[J]. Data Mining and Knowledge Discovery, 2014, 28(1):1-30. [14] BARNES E R. An algorithm for partitioning the nodes of a graph[C] // Proceedings of the 20th IEEE Conference on Decision and Control Including the Symposium on Adaptive Processes. New York: IEEE, 1981: 303-304. [15] GOLUB G H, LOAN C F V. Matrix computations[M]. Baltimore: John Hopkins University Press, 1989. [16] MA X K, GAO L, XUERONG Y, et al. Semi-supervised clustering algorithm for community structure detection in complex networks[J]. Physica A, 2010, 389(1):187-197. [17] FU L D, GAO L. An eigenvector-based kernel clustering approach to detecting communities in complex networks[C] // Proceeding of the 1st IRAST International Conference on Data Engineering and Internet Technology. Berlin: Springer-Verlag, 2013, 156:23-28. [18] NEWMAN M E J. Finding community structure in networks using the eigenvectors of matrices[J]. Physical Review E, 2006, 74(3):036104. Doi:10.1103/PhysRevE.74.036104. [19] KHORASGANI R R, CHEN J, ZAÏANE O R. Top leaders community detection approach in information networks[C] // Proceedings of the 2010 International Conference on Knowledge Discovery and Data Mining(KDD10). New York: ACM, 2010: 1-9. [20] ADAMCSEK B, PALLA G, FARKAS I J, et al. CFinder: locating cliques and overlapping modules in biological networks[J]. Bioinformatics, 2006, 22(8):1021-1023. [21] ZACHARY W W. An information flow model for conflict and fission in small groups[J]. Journal of Anthropological Research, 1997, 33(4):452-473. |
[1] | 张军,李竞飞,张瑞,阮兴茂,张烁. 基于网络有效阻抗的社区发现算法[J]. 山东大学学报(理学版), 2018, 53(3): 24-29. |
[2] | 魏思敏,张宪华,张祯,孟庆春,张夏然. 基于复杂网络的虚拟品牌社区意见领袖识别研究——以魅族Flyme社区为例[J]. 山东大学学报 (理学版), 2018, 53(11): 26-34. |
[3] | 王亚奇,王静. 考虑好奇心理机制的动态复杂网络谣言传播研究[J]. 山东大学学报(理学版), 2017, 52(6): 99-104. |
[4] | 吴平杰,周斌,吴泉源. COT:一种连续时间序列建模的社区发现算法[J]. 山东大学学报(理学版), 2016, 51(11): 41-49. |
[5] | 孙松涛, 何炎祥, 蔡瑞, 李飞, 贺飞艳. 面向微博情感评测任务的多方法对比研究[J]. 山东大学学报(理学版), 2014, 49(11): 43-50. |
|