您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报 (理学版) ›› 2018, Vol. 53 ›› Issue (11): 78-84.doi: 10.6040/j.issn.1671-9352.0.2017.370

• • 上一篇    下一篇

剩余类环上扩张因子的性质

王爱兰,宋巍涛,赵秀凤   

  1. 信息工程大学, 河南 郑州 450004
  • 发布日期:2018-11-14
  • 作者简介:王爱兰(1966— ),女,硕士,副教授,研究方向为格公钥密码. E-mail:yanjun_20082008@126.com
  • 基金资助:
    国家自然科学基金资助项目(61601515,61672031);河南省自然科学基金资助项目(162300410332)

Properties of the expansion factor over quotient ring

WANG Ai-lan, SONG Wei-tao, ZHAO Xiu-feng   

  1. Information Engineering University, Zhengzhou 450004, Henan, China
  • Published:2018-11-14
  • About author:国家自然科学基金资助项目(61601515,61672031);河南省自然科学基金资助项目(162300410332)
  • Supported by:
    国家自然科学基金资助项目(61601515,61672031);河南省自然科学基金资助项目(162300410332)

摘要: 由于简单、安全且便于高效实现,R-LWE上FHE方案成为目前FHE方案设计的主流。R-LWE上FHE方案基于剩余类环R=Z[x]/(f(x))的多项式扩张因子大小对密文同态操作时的噪声膨胀速度有重要影响。基于对无穷范数意义下多项式环R的扩张因子的研究,给出了几个特殊多项式所对应的具体扩张因子值。证明了系数为零的单项式越多的多项式,其对应的扩张因子越小,系数为0的单项式的幂次越高,其对应的扩张因子越小。该结果可为R-LWE上高效同态密码算法的设计提供理论指导。

关键词: 全同态加密, R-LWE困难问题, 无穷范数, 扩张因子

Abstract: Because of the simplicity, security and efficiency R-LWE-based FHE schemes become the mainstream design of FHE. The value of polynomial expansion factor of R-LWE-based FHE for quotient ring R=Z[x]/(f(x))has an important influence on the noise expansion speed for homomorphic operation of ciphertexts. Based on the expansion factor of ∞ norm for different polynomials, the values of expansion factors of ∞ norm over ring R for some special polynomials f(x)are obtained. It proves that the larger numbers of monomials with coefficient being zero for polynomials f(x), the smaller the corresponding expansion factors is. The higher the power of a monomial with a coefficient of 0, the smaller the corresponding expansion factor. The results can provide theoretical guidance for the design of efficient R-LWE-based FHE schemes.

Key words: homomorphic encryption, R-LWE problem, infinite norm, expanding factor

中图分类号: 

  • TN918
[1] RIVEST R L, ADLEMAN L, DERTOUZOS M L. On data banks and privacy homomorphisms[J]. Foundations of Secure Computation, 1978:169-179.
[2] MITTAL D, KAUR D, AGGARWAL A. Secure data mining in cloud using homomorphic encryption[C] //IEEE International Conference on Cloud Computing in Emerging Markets. [S.l] IEEE, 2014:1-7.
[3] PASUPULETI S K, RAMALINGAM S, BUYYA R. An efficient and secure privacy-preserving approach for outsourced data of resource constrained mobile devices in cloud computing[J]. Journal of Network & Computer Applications, 2016, 64(C):12-22.
[4] JAIN R, MADAN S, GARG B. Homomorphic framework to ensure data security in cloud environment[C] //International Conference on Innovation and Challenges in Cyber Security. [S.l] IEEE, 2016:177-181.
[5] GENTRY C. Fully homomorphic encryption using ideal lattices [J]. Stoc, 2009, 9(4):169-178.
[6] REGEV O. On lattices, learning with errors, random linear codes, and cryptography[C] //Acm Symposium on Theory of Computing. ACM, 2005:84-93.
[7] BRAKERSKI Z, VAIKUNTANATHAN V. Efficient fully homomorphic encryption from(standard)LWE[C] //Foundations of Computer Science. IEEE, 2011:97-106.
[8] BRAKERSKI Z, VAIKUNTANATHAN V. Fully homomorphic encryption from ring-LWE and security for key dependent messages[C] //Cryptology Conference. Berlin: Springer, 2011: 505-524.
[9] BRAKERSKI Z, GENTRY C, VAIKUNTANATHAN V.(Leveled)Fully homomorphic encryption without bootstrapping[J]. Acm Transactions on Computation Theory, 2014, 6(3):1-36.
[10] BRAKERSKI Z. Fully homomorphic encryption without modulus switching from classical GapSVP[C] //Cryptology Conference on Advances in Cryptology-CRYPTO. New York: Springer-Verlag, 2012: 868-886.
[11] GENTRY C, HALEVI S, PEIKERT C, et al. Ring switching in BGV-style homomorphic encryption[C] //International Conference on Security and Cryptography for Networks. Berlin: Springer, 2012:19-37.
[12] ALPERIN-SHERIFF J, PEIKERT C. Practical bootstrapping in quasilinear time[M] //Advances in Cryptology — CRYPTO 2013. Berlin: Springer, 2013: 1-20.
[13] GENTRy C, SAHAI A, WATERS B. Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based[M] //Advances in Cryptology—CRYPTO 2013. Berlin: Springer, 2013: 75-92.
[14] ALPERIN-SHERIFF J, PEIKERT C. Faster bootstrapping with polynomial error[M] //Advances in Cryptology—CRYPTO 2014. Berlin: Springer, 2014: 297-314.
[15] DUCAS L, MICCIANCIO D. FHEW: Bootstrapping homomorphic encryption in less than a second[M] //Advances in Cryptology-EUROCRYPT 2015. Berlin: Springer, 2015: 617-640.
[16] COSTACHE A, SMART N P. Which Ring based somewhat homomorphic encryption scheme is best?[C] //Cryptographers Track at the RSA Conference. Cham: Springer, 2016: 325-340.
[1] 王威力,胡斌,赵秀凤. 一种高效的多身份全同态加密方案[J]. 山东大学学报(理学版), 2017, 52(5): 85-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 邵勇. 半格序完全正则周期半群[J]. 山东大学学报(理学版), 2018, 53(10): 1 -5 .
[2] 巩增泰,高寒. n维模糊数值函数的预不变凸性[J]. 山东大学学报(理学版), 2018, 53(10): 72 -81 .
[3] 陈文倩,张孝金,昝立博. Gorenstein代数上的倾斜模的个数[J]. 山东大学学报(理学版), 2018, 53(10): 14 -16 .
[4] 郭寿桃,王占平. 正合零因子下模的Gorenstein同调维数[J]. 山东大学学报(理学版), 2018, 53(10): 17 -21 .
[5] 吴小英,王芳贵. 分次版本的Enochs定理[J]. 山东大学学报(理学版), 2018, 53(10): 22 -26 .
[6] 李美莲,邓青英. 平图的transition多项式的Maple计算[J]. 山东大学学报(理学版), 2018, 53(10): 27 -34 .
[7] 王丹,王正攀. 用禁止子半群刻画带簇的一个真子簇[J]. 山东大学学报(理学版), 2018, 53(10): 6 -8 .
[8] 梁星亮,吴苏朋,任军. C(P')系对幺半群的刻画[J]. 山东大学学报(理学版), 2018, 53(10): 9 -13 .
[9] 房启明,张莉. 无4-圈和5-圈的平面图的k-frugal列表染色[J]. 山东大学学报(理学版), 2018, 53(10): 35 -41 .
[10] 甄苇苇,曾剑,任建龙. 基于变分理论与时间相关的抛物型反源问题[J]. 山东大学学报(理学版), 2018, 53(10): 61 -71 .