您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (11): 41-49.doi: 10.6040/j.issn.1671-9352.2.2015.305

• • 上一篇    下一篇

COT:一种连续时间序列建模的社区发现算法

吴平杰,周斌,吴泉源   

  1. 国防科学技术大学计算机学院, 湖南 长沙 410073
  • 收稿日期:2015-09-21 出版日期:2016-11-20 发布日期:2016-11-22
  • 作者简介:吴平杰(1991— ),男,硕士研究生,研究方向为社交网络大数据挖掘.E-mail:fuz.woo@qq.com
  • 基金资助:
    国家重点基础研究发展计划(973计划)项目(2013CB329600)

COT: acontinuous temporal modeling algorithm for community discovery

WU Ping-jie, ZHOU Bin, WU Quan-yuan   

  1. College of Computer Science, National University of Defense Technology, Changsha 410073, Hunan, China
  • Received:2015-09-21 Online:2016-11-20 Published:2016-11-22

摘要: 研究基于交互及内容数据发现交往密切的交互社区,以及这些社区如何随时间发展变化,对于网络营销、内容推荐等应用具有重要意义。已有的基于内容与链接分析的混合模型大都未能对交互行为中广泛存在、且显著影响社区结构的时序信息进行统一建模分析。基于贝叶斯图模型,提出了一种可综合考虑交互信息、网络结构以及交互行为时间信息的社区发现模型COT(community over time),可用于从在线社交网络的交互数据中发现具有特定主题倾向及周期性行为模式的动态交互社区。模型采用Gibbs采样进行贝叶斯统计推断,通过在新浪微博真实数据集上的实验验证,可以有效应用于在线社交网络中并取得较高的精细度和可解释性。

Abstract: It is very important to discover closely-connected interactive communities, as well as mining their evolution patterns, by analyzing the content information, to benefit network marketing, content recommendation and other online applications. To the best of our knowledge, most of the hybrid models based on the content and link analysis failed to integrate the timestamp information into a unified model, and thus failed to use the temporal information as well. In this paper, we propose a new community discovery model, COT(community over time), based on the Bayesian graphical model, which can integrate textual content, topology structure and temporal information. Experimental evaluation on a real dataset from the SinaWeibo was performed, and the result shows that our model has obvious effect for online social networks and obtains better interpretability.

中图分类号: 

  • TP391
[1] 龚双双,陈钰枫,徐金安,张玉洁. 基于网络文本的汉语多词表达抽取方法[J]. 山东大学学报(理学版), 2018, 53(9): 40-48.
[2] 余传明,左宇恒,郭亚静,安璐. 基于复合主题演化模型的作者研究兴趣动态发现[J]. 山东大学学报(理学版), 2018, 53(9): 23-34.
[3] 严倩,王礼敏,李寿山,周国栋. 结合新闻和评论文本的读者情绪分类方法[J]. 山东大学学报(理学版), 2018, 53(9): 35-39.
[4] 原伟,唐亮,易绵竹. 基于本体的俄文新闻话题检测设计与实现[J]. 山东大学学报(理学版), 2018, 53(9): 49-54.
[5] 廖祥文,张凌鹰,魏晶晶,桂林,程学旗,陈国龙. 融合时间特征的社交媒介用户影响力分析[J]. 山东大学学报(理学版), 2018, 53(3): 1-12.
[6] 余传明,冯博琳,田鑫,安璐. 基于深度表示学习的多语言文本情感分析[J]. 山东大学学报(理学版), 2018, 53(3): 13-23.
[7] 张军,李竞飞,张瑞,阮兴茂,张烁. 基于网络有效阻抗的社区发现算法[J]. 山东大学学报(理学版), 2018, 53(3): 24-29.
[8] 庞博,刘远超. 融合pointwise及深度学习方法的篇章排序[J]. 山东大学学报(理学版), 2018, 53(3): 30-35.
[9] 陈鑫,薛云,卢昕,李万理,赵洪雅,胡晓晖. 基于保序子矩阵和频繁序列模式挖掘的文本情感特征提取方法[J]. 山东大学学报(理学版), 2018, 53(3): 36-45.
[10] 王彤,马延周,易绵竹. 基于DTW的俄语短指令语音识别[J]. 山东大学学报(理学版), 2017, 52(11): 29-36.
[11] 张晓东,董唯光,汤旻安,郭俊锋,梁金平. 压缩感知中基于广义Jaccard系数的gOMP重构算法[J]. 山东大学学报(理学版), 2017, 52(11): 23-28.
[12] 孙建东,顾秀森,李彦,徐蔚然. 基于COAE2016数据集的中文实体关系抽取算法研究[J]. 山东大学学报(理学版), 2017, 52(9): 7-12.
[13] 王凯,洪宇,邱盈盈,王剑,姚建民,周国栋. 一种查询意图边界检测方法研究[J]. 山东大学学报(理学版), 2017, 52(9): 13-18.
[14] 张帆,罗成,刘奕群,张敏,马少平. 异质搜索环境下的用户偏好性预测方法研究[J]. 山东大学学报(理学版), 2017, 52(9): 26-34.
[15] 杨艳,徐冰,杨沐昀,赵晶晶. 一种基于联合深度学习模型的情感分类方法[J]. 山东大学学报(理学版), 2017, 52(9): 19-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!