《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (1): 68-74.doi: 10.6040/j.issn.1671-9352.4.2020.156
• • 上一篇
张静,马建敏*
ZHANG Jing, MA Jian-min*
摘要: 在模糊形式背景中,首先基于变精度算子定义属性幂集上的一致关系,引入依赖空间;根据一致关系构造闭包算子,研究闭包算子与变精度概念之间的关系;进一步通过研究闭包算子的不动点和变精度概念的内涵之间的关系,给出变精度概念格的构造算法;最后通过实验验证本文方法的可行性。
中图分类号:
[1] WILLE R. Restructuring lattice theory: an approach based on hierarchies of concepts[J]. Formal Concept Analysis, 1982, 5548(83):314-339. [2] GANTER B, WILLE R. Formal concept analysis: mathematical foundations[M]. New York: Springer-Verlag, 1999: 157-192. [3] JARVINEN J. Difference functions of dependences spaces[J]. Acta Cybernetica, 2001, 14(4):619-630. [4] ZOU Caifeng, DENG Huifang, WAN Jiafu, et al. Mining and updating association rules based on fuzzy concept lattice[J]. Future Generation Computer Systems, 2018, 82:698-706. [5] 李金海, 吴伟志, 邓硕. 形式概念分析的多粒度标记理论[J]. 山东大学学报(理学版), 2019, 54(2):30-40. LI Jinhai, WU Weizhi, DENG Shuo. Multi-scale theory in formal concept analysis[J]. Journal of Shandong University(Natural Science), 2019, 54(2):30-40. [6] BURUSCO A, FUENTES R. The study of the L-fuzzy concept lattice[J]. Mathware and Soft Computing, 1994, 1(3):209-218. [7] BELOHLAVEK R. Concept lattices and order in fuzzy logic[J]. Annals of Pure and Applied Logic, 2004, 128(1):277-298. [8] ZHANG Wenxiu, MA Jianmin, FAN Shiqing. Variable threshold concept lattices[J]. Information Sciences, 2007, 177(22):4883-4892. [9] 仇国芳, 朱朝晖. 基于经典-模糊变精度概念格的决策规则获取及其推理算法[J]. 计算机科学, 2009, 36(12):216-218. QIU Guofang, ZHU Zhaohui. Acquisitions to decision rules and algorithms to inferences based on crisp-fuzzy variable threshold concept lattices[J]. Computer Science, 2009, 36(12):216-218. [10] YANG Yafeng. Parallel construction of variable precision concept lattice in fuzzy formal context[J]. AASRI Procedia, 2013, 5:214-219. [11] 范世青, 张文修. 模糊概念格与模糊推理[J]. 模糊系统与数学, 2006, 20(1):11-17. FAN Shiqing, ZHANG Wenxiu. Fuzzy concept lattice and fuzzy reasoning[J]. Fuzzy Systems and Mathematics, 2006, 20(1):11-17. [12] ZHUANG Ying, LIU Wenqi, WU Chinchia, et al. Pawlak algebra and approximate structure on fuzzy lattice[J]. The Scientific World Journal, 2014, 2014:697-706. [13] 崔芳婷, 王黎明, 张卓. 基于约束的模糊概念格构造算法[J]. 计算机科学, 2015, 42(8):288-293. CUI Fangting, WANG Liming, ZHANG Zhuo. Construction algorithm of fuzzy concept lattice based on constraints[J]. Computer Science, 2015, 42(8):288-293. [14] BOFFA S, MAIO C D, NOLA A D, et al. Unifying fuzzy concept lattice construction methods[C] //2016 IEEE International Conference on Fuzzy Systems(FUZZ-IEEE). [S.l] : IEEE, 2016. [15] PREM K, ASWANI C, LI Jinhai. Knowledge representation using interval-valued fuzzy formal concept lattice[J]. Soft Computing, 2016, 20(4):1485-1502. [16] MAO Hua, ZHENG Zhen. The construction of fuzzy concept lattice based on weighted complete graph[J]. Journal of Intelligent and Fuzzy Systems, 2019, 36(6):5797-5805. [17] 刘营营,米据生,梁美社,等. 三支区间集概念格[J]. 山东大学学报(理学版),2020, 55(3):70-80. LIU Yingying, MI Jusheng, LIANG Meishe, et al. Three-way interval-set concept lattice[J]. Journal of Shandong University(Natural Science), 2020, 55(3):70-80. [18] 林艺东, 李进金, 张呈玲. 基于矩阵的模糊-经典概念格属性约简[J]. 模式识别与人工智能, 2020, 33(1):21-31. LIN Yidong, LI Jinjin, ZHANG Chengling. Fuzzy-crisp concept lattice attribute reduction based on matrix[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(1):21-31. [19] NOVOTNY M. Dependence spaces of information system[J]. Incomplete Information: Rough Set Analysis, 1998, 13:193-246. [20] MA Jianmin, ZHANG Wenxiu, WANG Xia. Dependence space of concept lattices based on rough set[C] //2006 IEEE International Conference on Granular Computing. Atlanta: IEEE, 2006: 200-204. [21] WANG Xia. Approaches to attribute reduction in concept lattices based on rough set theory[J]. International Journal of Hybrid Information Technology, 2012, 5(2):67-79. [22] 包永伟, 王霞, 吴伟志. 两类概念格的依赖空间理论[J]. 计算机科学, 2014, 41(2):236-239. BAO Yongwei, WANG Xia, WU Weizhi. Dependence space based on two types of concept lattices[J]. Computer Science, 2014, 41(2):236-239. [23] SHU Chang, MO Zhiwen, TANG Xiao, et al. Attribute reduction of lattice-value information system based on L-dependence spaces[J]. Fuzzy Information & Engineering and Operations Research & Management, 2014, 211:107-112. [24] MA Jianmin, ZHANG Wenxiu, CAI Sheng. Variable threshold concept lattice and dependence space[J]. Fuzzy Systems and Knowledge Discovery, 2006, 4223:109-118. [25] WARD M, DILWORTH R P. Residuated lattices[J]. Trans Amer Math Soc, 1939, 45:335-354. [26] 裴道武. 剩余格与正则剩余格的特征定理[J]. 数学学报, 2002, 45(2):271-278. PEI Daowu. The characterization of residuated lattices and regular residuated lattices[J]. Journal of Mathematics, 2002,45(2):271-278. [27] BURUSCO A, FUENTES R. The study on interval-valued contexts[J]. Fuzzy Sets and Systems, 2001, 121(3):439-452. |
[1] | 李双伶,岳晓威,秦克云. 多源形式背景中的粒结构[J]. 《山东大学学报(理学版)》, 2020, 55(5): 46-54. |
[2] | 姬儒雅,魏玲,任睿思,赵思雨. 毕达哥拉斯模糊三支概念格[J]. 《山东大学学报(理学版)》, 2020, 55(11): 58-65. |
[3] | 卢涛,王习娟,贺伟. Topos中完备偏序对象上的算子理论[J]. 山东大学学报(理学版), 2016, 51(2): 64-71. |
[4] | 余承依,李进金*. 变精度粗糙集β下近似属性约简[J]. J4, 2011, 46(11): 17-21. |
[5] | 张艳霞,李生刚*,鲜路. M-闭包空间的积、和与商[J]. J4, 2010, 45(4): 74-76. |
|