《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (1): 60-67.doi: 10.6040/j.issn.1671-9352.0.2020.205
• • 上一篇
张文娟1,李进金1*,林艺东1,2
ZHANG Wen-juan1, LI Jin-jin1*, LIN Yi-dong1,2
摘要: 结合图的顶点覆盖理论,探讨了悲观多粒度粗糙集粒度约简的新方法。首先提出悲观多粒度粗糙集诱导图的概念, 并给出其粒度约简的图特征,在此基础上,以图的方法刻画粒度的重要度,进而设计基于图的悲观多粒度粗糙集粒度约简的算法;其次,定义悲观多粒度决策粗糙集诱导图的概念,类似地给出其粒度约简的图特征和粒度重要度,设计基于图的悲观多粒度决策粗糙集粒度约简的算法; 最后,利用实例说明悲观下近似多粒度粗糙集粒度约简算法的合理性。
中图分类号:
[1] PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982, 11(5):341-356. [2] QIAN Yuhua, LIANG Jiye, YAO Yiyu, et al. MGRS: a multi-granulation rough set[J]. Information Sciences, 2009, 180(6):949-970. [3] LIN Guoping, QIAN Yuhua, LI Jinjin. MGRS: neighborhood-based multi-granulation rough sets[J]. International Journal of Approximate Reasoning, 2012, 53(7):1080-1093. [4] 张明,唐振明,徐维艳,等. 可变多粒度粗糙集模型[J]. 模式识别与人工智能, 2012, 25(4):709-720. ZHANG Ming, TANG Zhenming, XU Weiyan, et al. Variable multigranulation rough set model[J]. Pattern Recognition and Artificial Intelligence, 2012, 25(4):709-720. [5] 吴志远,钟培华,胡建根,等. 程度多粒度粗糙集[J]. 模糊系统与数学, 2014, 28(3):165-172. WU Zhiyuan, ZHONG Peihua, HU Jiangen, et al. Graded multi-granulation rough sets[J]. Fuzzy Systems and Mathematics, 2014, 28(3):165-172. [6] 桑妍丽,钱宇华. 一种悲观多粒度粗糙集中的粒度约简算法[J]. 模式识别与人工智能, 2012, 25(3):361-366. SANG Yanli, QIAN Yuhua. A granular space reduction approach to pessimistic multi-granulation rough sets[J]. Pattern Recognition and Artificial Intelligence, 2012, 25(3):361-366. [7] 孟慧丽,马媛媛,徐久成. 基于信息量的悲观多粒度粗糙集粒度约简[J].南京大学学报(自然科学版), 2015, 51(2):343-348. MENG Huili, MA Yuanyuan, XU Jiucheng. The granularity reduction of pessimistic multi-granulation rough set based on the information quantity[J]. Journal of Nanjing University(Natural Sciences Edition), 2015, 51(2):343-348. [8] 胡善终,徐怡,何明慧,等. 多粒度粗糙集粒度约简的高效算法[J]. 计算机应用. 2017, 37(12):3391-3399. HU Shanzhong, XU Yi, HE Minghui, et al. Effective algorithm for granulation reduction of multigranulation rough set[J]. Journal of Computer Applications, 2017, 37(12):3391-3399. [9] CHEN Jinkun, LIN Yaojin, LIN Guoping, et al. Attribute reduction of covering decision systems by hypergraph model[J]. Information Science, 2017, 118:93-104. [10] 米据生,陈锦坤. 基于图的粗糙集属性约简方法[J]. 西北大学学报(自然科学版), 2019, 49(4):508-516. MI Jusheng, CHEN Jinkun. Graph-based approaches for attribute reduction in rough sets[J]. Journal of Northwest University(Natural Sciences Edition), 2019, 49(4):508-516. [11] TAN Anhui, WU Weizhi, LI Jinjin, et al. Reduction foundation with multigranulation rough sets using discernibility[J]. Atificial Intelligence Review, 2019, 53(4):2425-2452. [12] CHEN Jinkun, LIN Yaojin, LIN Guoping, et al. The relationship between attribute reducts in rough sets and minimal vertex covers of graphs[J]. Information Sciences, 2015, 325:87-97. [13] CHEN Jinkun, LIN Yaojin, LI Jinjin, et al. A rough set method for the minimum vertex cover problem of graphs[J]. Applied Soft Computing, 2016, 42:360-367. [14] BONDY J A, MURTY U S R. Graph therory with applications[M]. London: Macmillan, 1976. [15] BONDY J A, MURTY U S R. Graph theory[M]. Beilin: Springer, 2008. |
[1] | 张海洋,马周明,于佩秋,林梦雷,李进金. 多粒度粗糙集近似集的增量方法[J]. 《山东大学学报(理学版)》, 2020, 55(1): 51-61. |
[2] | 汪小燕,沈家兰,申元霞. 基于加权粒度和优势关系的程度多粒度粗糙集[J]. 山东大学学报(理学版), 2017, 52(3): 97-104. |
[3] | 王强,王玉振*. Hamilton框架下Flocking问题控制协议的设计[J]. J4, 2011, 46(7): 70-77. |
[4] | 祁忠斌,张和平 . 一类Fullerene图的1-共振性[J]. J4, 2008, 43(4): 67-72 . |
|