您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (1): 52-59.doi: 10.6040/j.issn.1671-9352.0.2020.340

• • 上一篇    

有限偶圈图上的 2-嵌入交错量子游荡

杨光波,王才士,罗艳,王燕燕,南雪琪   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 发布日期:2021-01-05
  • 作者简介:杨光波(1995— ),男,硕士研究生,研究方向为随机分析. E-mail:yanggbnwnu@163.com
  • 基金资助:
    国家自然科学基金资助项目(11861057)

2-Tessellable staggered quantum walk on finite even cycles

YANG Guang-bo, WANG Cai-shi, LUO Yan, WANG Yan-yan, NAN Xue-qi   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2021-01-05

摘要: 考虑了有限偶圈图上的 2-嵌入交错量子游荡,得到了它的演化矩阵,分析了演化矩阵的一些性质;给出了 2-嵌入交错量子游荡在 4-圈图上的概率分布列并与 4-圈图上的经典随机游荡进行比较。

关键词: 交错量子游荡, 团图, 图嵌入覆盖, 酉矩阵, 概率分布

Abstract: A 2-tessellable staggered quantum walk is considered on finite even cycles, its evolution matrix is obtained, and properties of the matrix are analyzed. The probability distributions of 2-tessellable staggered quantum walk on 4-cycle are given. A comparison is made between 2-tessellable staggered quantum walk and the classical random walk.

Key words: staggered quantum walk, clique, graph tessellation cover, unitary matrix, probability distribution

中图分类号: 

  • O211.4
[1] AHARONOV Y, DAVIDOVICH L, ZAGURY N. Quantum random walks[J]. Physical Review A, 1993, 48(2):1687-1690.
[2] VENEGAS ANDRACA S E. Quantum walks: a comprehensive review[J]. Quantum Inf Process, 2012, 11(5):1015-1106.
[3] PORTUGAL R, SANTOS R A M, FERNANDES T D, et al. The staggered quantum walk model[J]. Quantum Inf Process, 2016, 15(1):85-101.
[4] PORTUGAL R. Staggered quantum walks on graphs[J]. Physical Review A, 2016, 93(6):1-13.
[5] KONNO N, SATO I, SEGAWA E. The spectra of the unitary matrix of a 2-tessellable staggered quantum walk on a graph[EB/OL].(2017)[2020]. https://arxiv.org/abs/1701.08274v1.
[6] KONNO N, IDE Y, SATO I. The spectral analysis of the unitary matrix of a 2-tessellable staggered quantum walk on a graph[J]. Linear Algebra and Its Applications, 2018, 545: 207-225.
[7] HIGUCHI Y, PORTUGAL R, SATO I. Eigenbasis of the evolution operator of 2-tessellable quantum walks[J]. Linear Algebra and Its Applications, 2019, 583:257-281.
[8] PORTUGAL R. Quantum walks and search algorithms[M]. 2nd ed. Berlin: Springer, 2018.
[9] BIGGS N. Algebraic graph theory[M]. Cambridge: Cambridge University Press, 1974.
[10] CHAGAS B, PORTUGAL R, BOETTCHER S, et al. Staggered quantum walk on hexagonal lattices[J]. Physical Review A, 2018, 98(5):1-8.
[1] 黄爱玲,林帅. 局部量子Bernoulli噪声意义下的随机Schrödinger方程的有限维逼近[J]. 山东大学学报(理学版), 2017, 52(12): 67-71.
[2] 张涛,李晓林,陈平炎. 一类高斯序列极值的强律[J]. 山东大学学报(理学版), 2017, 52(2): 97-100.
[3] 邓小芹,吴群英. NA序列完全矩收敛的精确渐近性[J]. 山东大学学报(理学版), 2017, 52(1): 102-110.
[4] 张玉,肖犇琼,许可,沈爱婷. NSD随机变量阵列的完全矩收敛性[J]. 山东大学学报(理学版), 2016, 51(6): 30-36.
[5] 刘洋,冯志伟,陈平炎. 随机变量阵列的几乎处处中心极限定理[J]. 山东大学学报(理学版), 2016, 51(6): 24-29.
[6] 谭闯, 郭明乐, 祝东进. 行为ND随机变量阵列加权和的矩完全收敛性[J]. 山东大学学报(理学版), 2015, 50(06): 27-32.
[7] 钱硕歌, 杨文志. END随机变量移动平均过程的完全矩收敛性[J]. 山东大学学报(理学版), 2015, 50(06): 13-18.
[8] 郑璐璐, 葛梅梅, 刘艳芳, 王学军. φ混合序列的完全矩收敛性[J]. 山东大学学报(理学版), 2015, 50(04): 14-19.
[9] 冯志伟. 阵列的单对数极限律[J]. 山东大学学报(理学版), 2014, 49(07): 75-79.
[10] 谭成良,吴群英,田国华 . 行为ρ-混合随机变量阵列加权和的完全收敛性[J]. J4, 2008, 43(6): 87-91 .
[11] 邓小芹,吴群英. ρ-混合序列完全矩收敛的精确渐近性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 32-40.
[12] 张雅静,陶惠玲,李翔,沈爱婷. END随机变量的完全矩收敛和完全积分收敛[J]. 《山东大学学报(理学版)》, 2020, 55(1): 5-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!