您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (06): 13-18.doi: 10.6040/j.issn.1671-9352.0.2014.359

• 论文 • 上一篇    下一篇

END随机变量移动平均过程的完全矩收敛性

钱硕歌1, 杨文志2   

  1. 1. 中国科学技术大学统计与金融系, 安徽 合肥 230026;
    2. 安徽大学数学科学学院, 安徽 合肥 230601
  • 收稿日期:2014-08-07 修回日期:2015-05-11 出版日期:2015-06-20 发布日期:2015-07-31
  • 作者简介:钱硕歌(1991-), 男, 硕士研究生, 研究方向为统计学极限理论和纵向数据处理.E-mail:qianshuoge@gmail.com
  • 基金资助:
    国家自然科学基金资助项目(11426032);安徽省自然科学基金资助项目(1408085QA02)

Complete moment convergence of moving average process for END random variables

QIAN Shuo-ge1, YANG Wen-zhi2   

  1. 1. Department of Statistics and Finance, University of Science and Technology of China, Hefei 230026, Anhui, China;
    2. School of Mathematical Sciences, Anhui University, Hefei 230601, Anhui, China
  • Received:2014-08-07 Revised:2015-05-11 Online:2015-06-20 Published:2015-07-31

摘要: 构造了基于END随机变量序列的移动平均过程,利用END随机变量序列的矩不等式,建立了END随机变量序列移动平均过程的完全矩收敛。作为推论, 得到该过程的完全收敛性。

关键词: END随机变量, 移动平均过程, 完全矩收敛, 完全收敛

Abstract: The moving average process based on END random variables was constructed. By using the moment inequality of END random variables, the complete moment convergence for this moving average process was established. As a corollary, its complete convergence was also presented.

Key words: complete convergence, END random variables, complete moment convergence, moving average process

中图分类号: 

  • O211.4
[1] LIU Li. Precise large deviations for dependent random variables with heavy tails[J]. Statistics and Probability Letters, 2009, 79(9):1290-1298.
[2] LEHMANN E L. Some concepts of dependence[J]. Annals of Mathematical Statistics, 1966, 37(5):1137-1153.
[3] JOAG-DEV K, PROSCHAN F. Negative association of random variables with applications[J]. Annals of Statistics, 1983, 11(1):286-295.
[4] LIU Li. Necessary and Su-cient conditions for moderate deviations of dependent random variables with heavy tails[J]. Science in China Series A: Mathematics, 2010, 53(6):1421-434.
[5] WANG Xuejun, HU T C, VOLODIN A I, et al. Complete convergence for weighted sums and arrays of row wise extended negatively dependent random variables[J]. Communications in Statistics-Theory and Methods, 2013, 42(13):2391-2401.
[6] WANG Xuejun, WANG Shijie, HU Shuhe, et al. On complete convergence for weighted sums of rowwise extended negatively dependent random variables[J]. Stochastics: An International Journal of Probability and Stochastic Processes, 2013, 85(6):1060-1072.
[7] SHEN Aiting. Probability inequalities for END sequence and their applications[J].Journal of Inequalities and Applications, 2011, 2011:98.1-98.12.
[8] CHEN Yiqing, CHEN Anyue, NG K W. The strong law of large number for extended negatively dependent random variables[J]. The Journal of Applied Probability, 2010, 47:908-922.
[9] WANG Xuejun, ZHENG Lulu, XU Chen, et al. Complete consistency for the estimator of nonparametric regression models based on extended negatively dependent errors[J]. Statistics A Journal of Theoretical & Applied Statistics, 2015, 49(2):396-407.
[10] HU T C, ROSALSKY A, WANG K L. Complete convergence theorems for extended negatively dependent random variables[J]. Sankhya, 2015, 77A(1):1-29.
[11] 邓新, 夏凤熙, 王学军. END随机变量序列加权和的几乎处处收敛性[J]. 合肥工业大学学报:自然科学版, 2014, 37(6):761-763. DENG Xin, XIA Fengxi, WANG Xuejun. Almost sure convergence of weighted sums of END random variable sequences[J]. Journal of Hefei University of Technology: Natural Science, 2014, 37(6):761-763.
[12] 徐陈, 王学军, 王嫱. END随机变量阵列加权和的完全收敛性[J]. 高校应用数学学报, 2014, 29(3):253-260. XU Chen, WANG Xuejun, WANG Qiang. Complete convergence for weighted sums of arrays of rowwise extended negatively dependent random variables[J]. Applied Mathematics A Journal of Chinese Universities, 2014, 29(3):253-260.
[13] 徐陈, 郑璐璐, 陈志勇, 等. END随机变量序列加权和的完全收敛性[J]. 中国科学技术大学学报, 2014, 44(6):462-467. XU Chen, ZHENG Lulu, CHEN Zhiyong, et al. Complete convergence for weighted sums of arrays of rowwise extended negatively dependent random variables[J]. Journal of University of Science and Technology of China, 2014, 44(6):462-467.
[14] MATULA P. A note on the almost sure convergence of sums of negatively dependent random variables[J]. Statistics and Probability Letters, 1992, 15(3):209-213.
[15] ASADIAN N, FAKOOR V, BOZORGNIA A. Rosenthal's type inequalities for negatively orthant dependent random variables[J]. Journal of the Iranian Statistical Society, 2006, 5(1-2):69-75.
[16] SUNG S H. A note on the complete convergence for weighted sums of negatively dependent random variables[J]. Journal of Inequalities and Applications 2012, 2012:158.
[17] YANG Wenzhi, WANG Xuejun, WANG Xinghui, et al. The consistency for estimator of nonparametric regression model based on NOD errors[J]. Journal of Inequalities and Applications 2012, 2012:140.1-140.13
[18] WU Qunying. Complete convergence for negatively dependent sequences of random variables[J/OL]. Journal of Inequalities and Applications, 2010, 2010:507293.1-507293.10.
[19] WU Qunying. The strong consistency of M estimator in a linear model for negatively dependent random samples[J]. Communications in Statistics-Theory and Methods 2011, 40(3):467-491.
[20] WU Qunying. Probability limit theory of mixing sequences[M]. Beijing: Science Press, 2006.
[21] LI Deli, RAO M B, WANG Xiangchen. Complete convergence of moving average processes[J]. Statistics & Probability Letters, 1992, 14(2):111-114.
[22] LI Yuanxia, ZHANG Lixin. Complete moment convergence of moving-average processes under dependent assumptions[J]. Statistics & Probability Letters, 2004, 70(3):191-197.
[23] ZHANG Lixin. Complete convergence of moving average processes under dependent assumption[J]. Statistics & Probability Letters, 1996, 30(2):165-170
[24] CHEN Pingyan, HU T C, VOLODIN A. Limiting behaviour of moving average processes under φ-mixing assumption[J]. Statistics & Probability Letters, 2009, 79(1):105-111.
[25] ZHOU Xingcai. Complete moment convergence of moving average processes under φ-mixing assumptions[J]. Statistics & Probability Letters, 2010, 80(5-6):285-292.
[26] YANG Wenzhi, HU Shuhe, WANG Xuejun, et al. On complete convergence of moving average process for AANA sequence[J]. Discrete Dynamics in Nature and Society, 2012, Article ID 863931, 24 pages.
[27] SUNG S H. Convergence of moving average processes for dependent random variables[J]. Communications in Statistics-Theory and Methods, 2011, 40:2366-2376.
[28] ADLER A, ROSALSKY A. Some general strong laws for weighted sums of stochastically dominated random variables[J]. Stochastic Analysis and Applications, 1987, 5(1):1-16.
[29] ADLER A, ROSALSKY A, TAYLOR R L. Strong laws of large numbers for weighted sums of random elements in normed linear spaces[J]. International Journal of Mathematics and Mathematical Sciences, 1989, 12(3):507-530.
[30] SUNG S H. Moment inequalities and complete moment convergence[J]. Journal of Inequalities and Applications, 2009, 2009:271265.1-271265.14.
[1] 邓小芹,吴群英. NA序列完全矩收敛的精确渐近性[J]. 山东大学学报(理学版), 2017, 52(1): 102-110.
[2] 张玉,肖犇琼,许可,沈爱婷. NSD随机变量阵列的完全矩收敛性[J]. 山东大学学报(理学版), 2016, 51(6): 30-36.
[3] 张立君,郭明乐. 行为渐近负相协随机变量阵列加权和的矩完全收敛性[J]. 山东大学学报(理学版), 2016, 51(2): 42-49.
[4] 谭闯, 郭明乐, 祝东进. 行为ND随机变量阵列加权和的矩完全收敛性[J]. 山东大学学报(理学版), 2015, 50(06): 27-32.
[5] 郑璐璐, 葛梅梅, 刘艳芳, 王学军. φ混合序列的完全矩收敛性[J]. 山东大学学报(理学版), 2015, 50(04): 14-19.
[6] 许日丽,郭明乐. 行为ND随机变量阵列加权和的矩完全收敛性[J]. J4, 2013, 48(6): 9-13.
[7] 陈晓林 吴群英. 行混合阵列加权和最大值的完全收敛性[J]. J4, 2010, 45(2): 20-25.
[8] 谭成良,吴群英,田国华 . 行为ρ-混合随机变量阵列加权和的完全收敛性[J]. J4, 2008, 43(6): 87-91 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!