山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (06): 13-18.doi: 10.6040/j.issn.1671-9352.0.2014.359
钱硕歌1, 杨文志2
QIAN Shuo-ge1, YANG Wen-zhi2
摘要: 构造了基于END随机变量序列的移动平均过程,利用END随机变量序列的矩不等式,建立了END随机变量序列移动平均过程的完全矩收敛。作为推论, 得到该过程的完全收敛性。
中图分类号:
[1] LIU Li. Precise large deviations for dependent random variables with heavy tails[J]. Statistics and Probability Letters, 2009, 79(9):1290-1298. [2] LEHMANN E L. Some concepts of dependence[J]. Annals of Mathematical Statistics, 1966, 37(5):1137-1153. [3] JOAG-DEV K, PROSCHAN F. Negative association of random variables with applications[J]. Annals of Statistics, 1983, 11(1):286-295. [4] LIU Li. Necessary and Su-cient conditions for moderate deviations of dependent random variables with heavy tails[J]. Science in China Series A: Mathematics, 2010, 53(6):1421-434. [5] WANG Xuejun, HU T C, VOLODIN A I, et al. Complete convergence for weighted sums and arrays of row wise extended negatively dependent random variables[J]. Communications in Statistics-Theory and Methods, 2013, 42(13):2391-2401. [6] WANG Xuejun, WANG Shijie, HU Shuhe, et al. On complete convergence for weighted sums of rowwise extended negatively dependent random variables[J]. Stochastics: An International Journal of Probability and Stochastic Processes, 2013, 85(6):1060-1072. [7] SHEN Aiting. Probability inequalities for END sequence and their applications[J].Journal of Inequalities and Applications, 2011, 2011:98.1-98.12. [8] CHEN Yiqing, CHEN Anyue, NG K W. The strong law of large number for extended negatively dependent random variables[J]. The Journal of Applied Probability, 2010, 47:908-922. [9] WANG Xuejun, ZHENG Lulu, XU Chen, et al. Complete consistency for the estimator of nonparametric regression models based on extended negatively dependent errors[J]. Statistics A Journal of Theoretical & Applied Statistics, 2015, 49(2):396-407. [10] HU T C, ROSALSKY A, WANG K L. Complete convergence theorems for extended negatively dependent random variables[J]. Sankhya, 2015, 77A(1):1-29. [11] 邓新, 夏凤熙, 王学军. END随机变量序列加权和的几乎处处收敛性[J]. 合肥工业大学学报:自然科学版, 2014, 37(6):761-763. DENG Xin, XIA Fengxi, WANG Xuejun. Almost sure convergence of weighted sums of END random variable sequences[J]. Journal of Hefei University of Technology: Natural Science, 2014, 37(6):761-763. [12] 徐陈, 王学军, 王嫱. END随机变量阵列加权和的完全收敛性[J]. 高校应用数学学报, 2014, 29(3):253-260. XU Chen, WANG Xuejun, WANG Qiang. Complete convergence for weighted sums of arrays of rowwise extended negatively dependent random variables[J]. Applied Mathematics A Journal of Chinese Universities, 2014, 29(3):253-260. [13] 徐陈, 郑璐璐, 陈志勇, 等. END随机变量序列加权和的完全收敛性[J]. 中国科学技术大学学报, 2014, 44(6):462-467. XU Chen, ZHENG Lulu, CHEN Zhiyong, et al. Complete convergence for weighted sums of arrays of rowwise extended negatively dependent random variables[J]. Journal of University of Science and Technology of China, 2014, 44(6):462-467. [14] MATULA P. A note on the almost sure convergence of sums of negatively dependent random variables[J]. Statistics and Probability Letters, 1992, 15(3):209-213. [15] ASADIAN N, FAKOOR V, BOZORGNIA A. Rosenthal's type inequalities for negatively orthant dependent random variables[J]. Journal of the Iranian Statistical Society, 2006, 5(1-2):69-75. [16] SUNG S H. A note on the complete convergence for weighted sums of negatively dependent random variables[J]. Journal of Inequalities and Applications 2012, 2012:158. [17] YANG Wenzhi, WANG Xuejun, WANG Xinghui, et al. The consistency for estimator of nonparametric regression model based on NOD errors[J]. Journal of Inequalities and Applications 2012, 2012:140.1-140.13 [18] WU Qunying. Complete convergence for negatively dependent sequences of random variables[J/OL]. Journal of Inequalities and Applications, 2010, 2010:507293.1-507293.10. [19] WU Qunying. The strong consistency of M estimator in a linear model for negatively dependent random samples[J]. Communications in Statistics-Theory and Methods 2011, 40(3):467-491. [20] WU Qunying. Probability limit theory of mixing sequences[M]. Beijing: Science Press, 2006. [21] LI Deli, RAO M B, WANG Xiangchen. Complete convergence of moving average processes[J]. Statistics & Probability Letters, 1992, 14(2):111-114. [22] LI Yuanxia, ZHANG Lixin. Complete moment convergence of moving-average processes under dependent assumptions[J]. Statistics & Probability Letters, 2004, 70(3):191-197. [23] ZHANG Lixin. Complete convergence of moving average processes under dependent assumption[J]. Statistics & Probability Letters, 1996, 30(2):165-170 [24] CHEN Pingyan, HU T C, VOLODIN A. Limiting behaviour of moving average processes under φ-mixing assumption[J]. Statistics & Probability Letters, 2009, 79(1):105-111. [25] ZHOU Xingcai. Complete moment convergence of moving average processes under φ-mixing assumptions[J]. Statistics & Probability Letters, 2010, 80(5-6):285-292. [26] YANG Wenzhi, HU Shuhe, WANG Xuejun, et al. On complete convergence of moving average process for AANA sequence[J]. Discrete Dynamics in Nature and Society, 2012, Article ID 863931, 24 pages. [27] SUNG S H. Convergence of moving average processes for dependent random variables[J]. Communications in Statistics-Theory and Methods, 2011, 40:2366-2376. [28] ADLER A, ROSALSKY A. Some general strong laws for weighted sums of stochastically dominated random variables[J]. Stochastic Analysis and Applications, 1987, 5(1):1-16. [29] ADLER A, ROSALSKY A, TAYLOR R L. Strong laws of large numbers for weighted sums of random elements in normed linear spaces[J]. International Journal of Mathematics and Mathematical Sciences, 1989, 12(3):507-530. [30] SUNG S H. Moment inequalities and complete moment convergence[J]. Journal of Inequalities and Applications, 2009, 2009:271265.1-271265.14. |
[1] | 邓小芹,吴群英. NA序列完全矩收敛的精确渐近性[J]. 山东大学学报(理学版), 2017, 52(1): 102-110. |
[2] | 张玉,肖犇琼,许可,沈爱婷. NSD随机变量阵列的完全矩收敛性[J]. 山东大学学报(理学版), 2016, 51(6): 30-36. |
[3] | 张立君,郭明乐. 行为渐近负相协随机变量阵列加权和的矩完全收敛性[J]. 山东大学学报(理学版), 2016, 51(2): 42-49. |
[4] | 谭闯, 郭明乐, 祝东进. 行为ND随机变量阵列加权和的矩完全收敛性[J]. 山东大学学报(理学版), 2015, 50(06): 27-32. |
[5] | 郑璐璐, 葛梅梅, 刘艳芳, 王学军. φ混合序列的完全矩收敛性[J]. 山东大学学报(理学版), 2015, 50(04): 14-19. |
[6] | 许日丽,郭明乐. 行为ND随机变量阵列加权和的矩完全收敛性[J]. J4, 2013, 48(6): 9-13. |
[7] | 陈晓林 吴群英. 行混合阵列加权和最大值的完全收敛性[J]. J4, 2010, 45(2): 20-25. |
[8] | 谭成良,吴群英,田国华 . 行为ρ-混合随机变量阵列加权和的完全收敛性[J]. J4, 2008, 43(6): 87-91 . |
|