山东大学学报(理学版) ›› 2014, Vol. 49 ›› Issue (07): 75-79.doi: 10.6040/j.issn.1671-9352.0.2014.015
冯志伟
FENG Zhi-wei
摘要: 利用随机变量阵列的强逼近,得到了随机变量阵列的单对数极限律,深化了已有的研究结果。同时,对取值于Banach空间的随机元阵列也得到了类似的结果。
中图分类号:
[1] HARTMAN P, WINTNER P. On the law of the iterated logarithm[J]. Am J Math, 1941, 63:169-176. [2] STRASSEN V. A converse to the law of the iterated logarithm[J]. Z Wahrscheinlichkeitstheor Verwandte Geb, 1966, 4:265-268. [3] CHEN Xia. The limit law of the iterated logarithm [J/OL]. J Theoret Probab,2013[2013-12-10].http://dx.doi.org/10.1007/S 10959-013-0481-4. [4] LI Deli, LIANG Hanying. The limit law of the iterated logarithm in Banach space[J]. Statistics and Probability Letters, 2013, 83:1800-1804. [5] HU T C, WEBERN C. On the rate of convergence in the strong law of large number for arrays[J]. Bull Austral Math Soc, 1992, 45:279-282. [6] LI Deli, RAO M B, TOMKINS R J. A strong law for B-valued arrays[J]. Proc Amer Math Soc, 1995, 123:3205-3212. [7] QI Y C. On the strong convergence of arrays[J]. Bull Austral Math Soc, 1994, 50:219-223. [8] 汪嘉冈.现代概率论基础[M].上海:复旦大学出版社, 2005: 98-99. WANG Jiagang. Modern probability theory[M]. Shanghai: Fudan University Press, 2005:98-99. [9] LI Deli, HUANG Meiling, ROSALSKYA. Strong invariance principles for arrays[J]. Bull Inst Math Acad Sinica, 2000, 28:167-181. |
[1] | 刘洋,冯志伟,陈平炎. 随机变量阵列的几乎处处中心极限定理[J]. 山东大学学报(理学版), 2016, 51(6): 24-29. |
[2] | 许日丽,郭明乐. 行为ND随机变量阵列加权和的矩完全收敛性[J]. J4, 2013, 48(6): 9-13. |
[3] | 管总平,孙友彬. 随机变量阵列的强收敛性[J]. J4, 2009, 44(12): 56-59. |
|