• •

### 随机变量阵列的几乎处处中心极限定理

1. 1.暨南大学统计学系, 广东 广州 510630;2. 暨南大学数学系, 广东 广州 510630
• 收稿日期:2015-08-10 出版日期:2016-06-20 发布日期:2016-06-15
• 通讯作者: 陈平炎(1968— ),男,教授,研究方向为概率极限理论、应用概率、分形随机场.E-mail:tchenpy@jnu.edu.cn E-mail:liuy199103@163.com
• 作者简介:刘洋(1991— ),男,硕士研究生,研究方向为极限理论及分析概率.E-mail:liuy199103@163.com
• 基金资助:
国家自然科学基金资助项目(11271161)

### Almost sure central limit theorem for arrays of random variables

LIU Yang1, FENG Zhi-wei1, CHEN Ping-yan2*

1. 1.Department of Statistics, Jinan University, Guangzhou 510630, Guangdong, China;
2. Department of Mathematics, Jinan University, Guangzhou 510630, Guangdong, China
• Received:2015-08-10 Online:2016-06-20 Published:2016-06-15

Abstract: It is different between sequence and array of random variables on the almost sure central limit theorem, and the selection of its weight coefficient has certain requirements. In this paper, we study two kinds of different weight selection conditions for arrays of random variables, and obtain the almost sure central limit theorems and inferences for arrays of random variables.

• O211.4
 [1] SCHATTE P. On strong versions of the central limit theorem[J]. Statistics and Probability Letters, 1988, 137:249-256.[2] LACEY M T, Philipp W. A note on the almost sure central limit theorem[J]. Statistics and Probability Letters, 1990, 9:201-205.[3] BERKES I. On the almost sure central limit theorem and domains of attraction[J]. Probab Theory Related Fields, 1995, 102:1-18.[4] BERKES I, Dehling H. Some limit theorems in log density[J]. Ann Probab, 1993, 21:1640-1670.[5] BERKES I, Dehling H. On the almost sure central limit theorem for random variables with inJnite variance[J]. Theoret Probab, 1994, 7:667-680.[6] CSORGO M, HORVATH L. Invariance principles for logarithmic averages[J]. Math Proc Cambridge Phil Soc, 1992, 112:195-205.[7] PELIGRAD M, SHAO Q M. A note on the almost sure central limit theorem for weakly dependent random variables[J]. Statistics and Probability Letters, 1995, 22:131-136.[8] DUDZINSKI M. An almost sure limit theorem for the maxima and sums of stationary Gaussian sequences[J]. Statistics and Probability Letters, 2003, 23:139-152.[9] PELIGRAD M, REVESZ P. On the almost sure central limit theorem[M]. Almost everywhere convergence II. Boston, MA: Academic Press, 1991.[10] BERKES I, CSAKI E. A universal result in almost sure central limit theory[J]. Stochastic Process and Applications, 2001, 94:105-134.[11] CHEN P, YE X, HU T C. A strong law and a law of the single logarithm for arrays of rowwise independent random variables[J]. Statistics and Probability Letters, 2016, 110:169-174.[12] 林正炎,陆传荣,苏中根.概率极限理论基础[M]. 北京:高等教育出版社,1999:85-95.[13] 汪嘉冈.现代概率论基础[M].上海: 复旦大学出版社, 2005:98-99.
 [1] 郑晶,王应明,张恺. 基于应急决策视角的案例检索及属性权重确定方法[J]. 山东大学学报（理学版）, 2017, 52(1): 56-64. [2] 万中英,王明文,左家莉,万剑怡. 结合全局和局部信息的特征选择算法[J]. 山东大学学报（理学版）, 2016, 51(5): 87-93. [3] 徐锋,吴群英. NA列自正则某些部分和乘积的几乎处处中心极限定理[J]. 山东大学学报（理学版）, 2016, 51(2): 50-57. [4] 奉国和,王丹迪,李媚婵. 基于SVD的档案学主题挖掘[J]. 山东大学学报（理学版）, 2016, 51(1): 95-100. [5] 黄春兰, 吴胜利. 数据融合在搜索结果多元化上的应用[J]. 山东大学学报（理学版）, 2015, 50(01): 31-36. [6] 甘信军, 杨维强. 证据权重方法与信用风险控制[J]. 山东大学学报（理学版）, 2014, 49(12): 55-59. [7] 冯志伟. 阵列的单对数极限律[J]. 山东大学学报（理学版）, 2014, 49(07): 75-79. [8] 刘艳萍,吴群英. 优化权重下高斯序列最大值几乎处处中心极限定理[J]. 山东大学学报（理学版）, 2014, 49(05): 50-53. [9] 许日丽,郭明乐. 行为ND随机变量阵列加权和的矩完全收敛性[J]. J4, 2013, 48(6): 9-13. [10] 周燕1,2,刘培玉1,2,赵静1,2,王乾龙1,2. 基于自适应惯性权重的混沌粒子群算法[J]. J4, 2012, 47(3): 27-32. [11] 付艳莉,吴群英. 强混合序列部分和之和乘积的几乎处处中心极限定理[J]. J4, 2010, 45(8): 104-108. [12] 管总平，孙友彬. 随机变量阵列的强收敛性[J]. J4, 2009, 44(12): 56-59. [13] 张方伟,曲淑英,王志强,姚炳学,曾现洋 . 偏差最小化方法及其在多属性决策中的应用[J]. J4, 2007, 42(3): 32-35 . [14] 李秀红 . 基于灰色关联度的多目标决策模型与应用[J]. J4, 2007, 42(12): 33-36 .
Viewed
Full text

Abstract

Cited

Shared
Discussed
 No Suggested Reading articles found!