您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (6): 30-36.doi: 10.6040/j.issn.1671-9352.0.2015.340

• • 上一篇    下一篇

NSD随机变量阵列的完全矩收敛性

张玉,肖犇琼,许可,沈爱婷*   

  1. 安徽大学数学科学学院, 安徽 合肥 230601
  • 收稿日期:2015-07-07 出版日期:2016-06-20 发布日期:2016-06-15
  • 通讯作者: 沈爱婷(1979— ), 女, 副教授, 研究方向为概率极限理论. E-mail:empress201010@126.com E-mail:a1311476707@126.com
  • 作者简介:张玉(1989— ), 男, 硕士研究生, 研究方向为概率极限理论. E-mail: a1311476707@126.com
  • 基金资助:
    国家自然科学基金资助项目(11501004);安徽省自然科学基金资助项目(1308085QA03);安徽高等学校省级自然科学研究重点项目(KJ2015A018);安徽省高等学校省级质量工程项目(2015jyxm045);安徽大学质量提升项目(ZLTS2015035);大学生创新创业训练计划项目(201510357116)

Complete moment convergence for arrays of rowwise NSD random variables

ZHANG Yu, XIAO Ben-qiong, XU Ke, SHEN Ai-ting*   

  1. School of Mathematical Sciences, Anhui University, Hefei 230601, Anhui, China
  • Received:2015-07-07 Online:2016-06-20 Published:2016-06-15

摘要: 主要利用负超可加相依NSD(negatively superadditive dependent)随机变量的截尾技术和Rosenthal型不等式,研究了NSD随机变量阵列部分和的最大值序列的完全矩收敛性,给出了证明完全矩收敛性的一些充分条件。所得结果推广了独立变量和若干相依变量的相应结果。

关键词: NSD随机变量, 完全矩收敛性, Rosenthal型不等式

Abstract: We mainly study the complete moment convergence for maximal partial sums of arrays of rowwise negatively superadditive dependent(NSD)random variables by using the truncation method of random variables and Rosenthal type inequality. Some sufficient conditions to prove the complete moment convergence are provided. The results obtained in this paper generalize some corresponding ones for independent random variables and some negatively dependent random variables.

Key words: Rosenthal type inequality, negatively superadditive dependent random variables, complete moment convergence

中图分类号: 

  • O211.4
[1] HU T Z. Negatively superadditive dependence of random variables with applications[J]. Chinese Journal of Applied Probability and Statistics, 2000, 16:133-144.
[2] CHRISTODES T C, VAGGELATOU E. A connection between supermodular ordering and positive/negative association[J]. Journal of Multivariate Analysis, 2004, 88(1):138-151.
[3] SHEN Y, WANG X J, YANG W Z, et al. Almost sure convergence theorem and strong stability for weighted sums of NSD random variables[J]. Acta Mathematica Sinica: English Series, 2013, 29:743-756.
[4] WANG X J, DENG X, ZHENG L L, et al. Complete convergence for arrays of row wise negatively super additive dependent random variables and its applications[J]. Statistics: A Journal of Theoretical and Applied Statistics, 2014, 48(4):834-850.
[5] SHEN A T, ZHANG Y, VOLODIN A. Applications of the Rosenthal-type inequality for negatively super additive dependent random variables[J]. Metrika, 2015, 78:295-311.
[6] WANG X J, SHEN A T, CHEN Z Y, et al. Complete convergence for weighted sums of NSD random variables and its application in the EV regression model[J]. TEST, 2015, 24:166-184.
[7] XUE Z, ZHANG L L, LEI Y J, et al. Complete moment convergence for weighted sums of negatively superadditive dependent random variables[J]. Journal of Inequalities and Applications, 2015, 117:1-13.
[8] AMINI M, BOZORGNIA A, NADERI H,et al. On complete convergence of moving average processes for NSD sequences[J]. Siberian Advances in Mathematics, 2015, 25:11-20.
[9] CHOW Y S. On the rate of moment complete convergence of sample sums and extremes[J]. Bulletin of the Institute of Mathematics Analysis and Application, 1988, 388: 451-462.
[10] 郑璐璐, 葛梅梅,刘艳芳,等.(~overφ)混合序列的完全矩收敛性[J].山东大学学报(理学版),2015,50(4):14-19. ZHENG Lulu, GE Meimei, LIU Yanfang, et al. Complete moment convergence for sequences of (~overφ) mixing random variables[J]. Journal of Shandong University(Natural Science), 2015, 50(4):14-19.
[11] 王定成, 赵武. NA序列部分和的矩完全收敛性[J]. 高校应用数学学报:A辑,2006,21(4):445-450. WANG Dingcheng, ZHAO Wu. Moment complete convergence for sums of a sequence of NA random variables[J]. Applied Mathematics A Journal of Chinese Universities, 2006, 21(4):445-450.
[12] 钱硕歌,杨文志. END随机变量移动平均过程的完全矩收敛性[J]. 山东大学学报(理学版),2015,50(6):13-18. QIAN Shuoge, YANG Wenzhi. Complete moment convergence of moving average process for END random variables[J]. Journal of Shandong University(Natural Science), 2015, 50(6):13-18.
[13] YANG W Z, HU S H, WANG X J, et al. Complete convergence for moving average process of martingale differences[J]. Discrete Dynamics in Nature and Society, 2012, 128492:1- 16.
[14] 郭明乐,张杨杨,祝东进.NOD随机变量序列加权和的矩完全收敛性[J]. 高校应用数学学报:A辑,2013,28(1):34-42. GUO Mingle, ZHANG Yangyang, ZHU Dongjin.Complete moment convergence for weighted sums of sequence of NOD random variable[J]. Applied Mathematics A Journal of Chinese Universities, 2013, 28(1):34-42.
[15] WANG X J, HU S H. Complete convergence and complete moment convergence for martingale difference sequence[J]. Acta Mathematica Sinica: English Series, 2014, 30(1):119-132.
[1] 郑璐璐, 葛梅梅, 刘艳芳, 王学军. φ混合序列的完全矩收敛性[J]. 山东大学学报(理学版), 2015, 50(04): 14-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!