您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (2): 50-57.doi: 10.6040/j.issn.1671-9352.0.2015.106

• • 上一篇    下一篇

NA列自正则某些部分和乘积的几乎处处中心极限定理

徐锋,吴群英*   

  1. 桂林理工大学理学院, 广西 桂林 541004
  • 收稿日期:2015-03-12 出版日期:2016-02-16 发布日期:2016-03-11
  • 通讯作者: 吴群英(1961— ),女,博士,教授,研究方向为概率统计.E-mail:wqy666@glut.edu.cn E-mail:xufeng34@163.com
  • 作者简介:徐锋(1989— ),男,硕士生,研究方向为概率极限理论. E-mail:xufeng34@163.com
  • 基金资助:
    国家自然科学基金资助项目(11361019);广西自然科学基金重点项目(2013GXNSFDA019001)

Almost sure central limit theorem for self-normalized products of some partial sums of NA random variables

XU Feng, WU Qun-ying*   

  1. College of Science, Guilin University of Technology, Guilin 541004, Guangxi, China
  • Received:2015-03-12 Online:2016-02-16 Published:2016-03-11

摘要: 设{X,Xn}n∈N是平稳正的负相关(negatively associated, NA)随机变量序列,证明自正则某些部分和乘积(∏ki=1(Sk,i/((k-1)μ)))μ/(βVk)的几乎处处中心极限定理,其中β>0为一常数,E(X)=μ, Sk,i=∑kj=1Xj-Xi, 1≤i≤k, V2k=∑ki=1(Xi-μ)2。获得的结果不仅将其权重进行了推广而且也扩大了随机变量的范围。

关键词: 部分和乘积, 几乎处处中心极限定理, 自正则, NA列

Abstract: Let {X,Xn}n∈N be a stationary sequence of NA positive random variables. We proved an almost sure central limit theorem for the self-normalized products of some partial sums(∏ki=1(Sk,i/((k-1)μ)))μ/(βVk), where β>0 was a constant, E(X)=μ, Sk,i=∑kj=1Xj-Xi, 1≤i≤k, V2k=∑ki=1(Xi-μ)2. The results generalize not only on the weigh of the almost sure central limit theorem but also in the range of random variables.

Key words: self-normalized, products of sums, almost sure central limit theorem, NA sequences

中图分类号: 

  • O211
[1] JOAG-DEV K, PROSCHAN F. Negative association of random variables with applications[J]. Ann Statist, 1983, 11:286-295.
[2] ARNOLD B C, VILLASE(~overN)R J A. The asymptotic distribution of sums of records[J].Extremes, 1998, 1(3):351-363.
[3] PANG Tianxiao, LIN Zhangyan, HWANG K S. Asymptotics for self-normalized random products of sums of i.i.d. random variables[J]. Math Anal Appl, 2007, 334:1246-1259.
[4] ZHANG Yong, YANG Xiaoyun. An almost sure central limit theorem for self-normalized products of sums of i.i.d. random variables[J]. Math Anal Appl, 2011, 376:29-41.
[5] WU Qunying, CHEN Pingyan. An improved result in almost sure central limit theorem for self-normalized products of partial sums[J]. Journal of Inequalities and Applications, 2013, 2013:129.1-129.12.
[6] YU Miao. Central limit theorem and almost sure central limit theorem for the product of some partial sums[J]. Proc Indian Acad Sci Math Sci, 2008, 118(2):289-294.
[7] NEWMAN C M. Asymptotic independence and limit theorems for positively and negatively dependent variables[J]. Statist Probab Lett, 1984, 5:127-140.
[8] SU Chun, ZHAO Lincheng, WANG Yuebao. Moment inequalities and weak convergence for negatively associated sequences[J]. Science in China Series A, 1997, 40(2):172-182.
[9] BILLINGSLEY P. Convergence of probability measures [M]. New York:Wiley, 1968.
[10] PELIGRAD M, SHAO Qiman. A note on the almost sure central limit theorem for weakly dependent random variables[J]. Statistics and Probability Letters, 1995, 22:131-136.
[11] ZHANG Lixin. The weak convergence for functions of negatively associated random variables[J]. Multivariate Anal, 2001, 78:272-298.
[12] 苏淳,王岳宝.同分布NA序列的强收敛性[J].应用概率统计,1998,14(2):131-140. SU Chun, WANG Yuebao. Strong convergence for IDNA sequences[J].Chinese Journal of Applied Probability and Statistics, 1998, 14(2):131-140.
[13] 吴群英.混合序列的概率极限理论[M].北京:科学出版社,2006:17. WU Qunying. Probability limit theorems of maxing sequences [M]. Beijing: Science Press, 2006:17.
[1] 刘洋,冯志伟,陈平炎. 随机变量阵列的几乎处处中心极限定理[J]. 山东大学学报(理学版), 2016, 51(6): 24-29.
[2] 付艳莉,吴群英. 强混合序列部分和之和乘积的几乎处处中心极限定理[J]. J4, 2010, 45(8): 104-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!