您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2014, Vol. 49 ›› Issue (07): 75-79.doi: 10.6040/j.issn.1671-9352.0.2014.015

• 论文 • 上一篇    下一篇

阵列的单对数极限律

冯志伟   

  1. 暨南大学统计系, 广东 广州 510630
  • 收稿日期:2014-01-09 出版日期:2014-07-20 发布日期:2014-09-15
  • 作者简介:冯志伟(1990- ),男,硕士研究生,研究方向为极限理论与分析概率. E-mail:fengzw1990@126.com
  • 基金资助:
    国家自然科学基金资助项目(11271161)

The limit law of the single logarithm for arrays

FENG Zhi-wei   

  1. Department of Statistics, Jinan University, Guangzhou 510630, Guangdong, China
  • Received:2014-01-09 Online:2014-07-20 Published:2014-09-15

摘要: 利用随机变量阵列的强逼近,得到了随机变量阵列的单对数极限律,深化了已有的研究结果。同时,对取值于Banach空间的随机元阵列也得到了类似的结果。

关键词: 单对数律, 单对数极限律, 随机变量阵列, 随机元

Abstract: The limit law of the single logarithm by arrays of i.i.d random variables is obtained through the strong approximations, deepening the existing result. And the similar result is got in Banach space setting.

Key words: array of random variables, random element, the limit law of the single logarithm, the law of the single logarithm

中图分类号: 

  • O211.4
[1] HARTMAN P, WINTNER P. On the law of the iterated logarithm[J]. Am J Math, 1941, 63:169-176.
[2] STRASSEN V. A converse to the law of the iterated logarithm[J]. Z Wahrscheinlichkeitstheor Verwandte Geb, 1966, 4:265-268.
[3] CHEN Xia. The limit law of the iterated logarithm [J/OL]. J Theoret Probab,2013[2013-12-10].http://dx.doi.org/10.1007/S 10959-013-0481-4.
[4] LI Deli, LIANG Hanying. The limit law of the iterated logarithm in Banach space[J]. Statistics and Probability Letters, 2013, 83:1800-1804.
[5] HU T C, WEBERN C. On the rate of convergence in the strong law of large number for arrays[J]. Bull Austral Math Soc, 1992, 45:279-282.
[6] LI Deli, RAO M B, TOMKINS R J. A strong law for B-valued arrays[J]. Proc Amer Math Soc, 1995, 123:3205-3212.
[7] QI Y C. On the strong convergence of arrays[J]. Bull Austral Math Soc, 1994, 50:219-223.
[8] 汪嘉冈.现代概率论基础[M].上海:复旦大学出版社, 2005: 98-99. WANG Jiagang. Modern probability theory[M]. Shanghai: Fudan University Press, 2005:98-99.
[9] LI Deli, HUANG Meiling, ROSALSKYA. Strong invariance principles for arrays[J]. Bull Inst Math Acad Sinica, 2000, 28:167-181.
[1] 刘洋,冯志伟,陈平炎. 随机变量阵列的几乎处处中心极限定理[J]. 山东大学学报(理学版), 2016, 51(6): 24-29.
[2] 许日丽,郭明乐. 行为ND随机变量阵列加权和的矩完全收敛性[J]. J4, 2013, 48(6): 9-13.
[3] 管总平,孙友彬. 随机变量阵列的强收敛性[J]. J4, 2009, 44(12): 56-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!