您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (6): 32-40.doi: 10.6040/j.issn.1671-9352.0.2019.703

• • 上一篇    

ρ-混合序列完全矩收敛的精确渐近性

邓小芹,吴群英*   

  1. 桂林理工大学理学院, 广西 桂林 541004
  • 发布日期:2020-06-01
  • 作者简介:邓小芹(1989— ),女,硕士,研究方向为概率极限理论.E-mail:1084979551@qq.com*通信作者简介:吴群英(1961— ),女,博士,教授,研究方向为概率极限理论.E-mail:wqy666@glut.edu.cn
  • 基金资助:
    广西自然科学基金资助项目(2018GXNSFAA281011)

Precise asymptotics of complete moment convergence for ρ-mixing sequence

DENG Xiao-qin, WU Qun-ying*   

  1. College of Science, Guilin University of Technology, Guilin 541004, Guangxi, China
  • Published:2020-06-01

摘要: 对于具有零均值、同分布的ρ-混合序列,在适当的矩条件下,通过利用ρ-混合序列移动平均过程的中心极限定理及其矩不等式,采用多重截尾的方法,获得了ρ-混合序列关于移动平均过程完全矩收敛的精确渐近性的相关结论,推广了独立情形的结果

关键词: ρ-混合序列, 移动平均过程, 完全矩收敛, 精确渐近性

Abstract: There is a ρ-mixing sequence with mean zero and same distribution. Under some suitable moment conditions, by using the central limit theorem for ρ-mixing sequence on moving average process and its moment inequality, and the method of multiple censoring, the paper obtain the relevant conclusion that precise asymptotics of complete moment convergence of the ρ-mixing random variables on the moving average process, which extends the result of independent random variables.

Key words: ρ-mixing sequence, moving-average process, complete moment convergence, precise asymptotics

中图分类号: 

  • O211.4
[1] KOLMOGOROV A N, ROZANOV Y A. On strong mixing conditions for stationary gaussian processes[J]. Theory of Probability & Its Applications, 1960, 5(2):204-208.
[2] 姜德元. 关于ρ-混合序列对数律的收敛速度[J]. 应用数学,2002,15(3):32-37. JIANG Deyuan. On the convergence rates in the law of iterated logarithm of ρ-mixing sequences[J]. Mathematica Applicata, 2002,15(3):32-37.
[3] 冯凤香,王定成. 行(~overρ)-混合随机变量阵列加权和的完全收敛性(英文)[J]. 应用数学,2016, 29(3):503-513. FENG Fengxiang, WANG Dingcheng. On complete convergence for weighted sums of arrays of rowwise ρ^~-mixing random variables[J]. Mathematica Applicata, 2016, 29(3):503-513.
[4] 付宗魁,吴群英.ρ-混合序列完全矩收敛的精确渐进性[J]. 湖北大学学报(自然科学版),2015,37(5):431-437. FU Zongkui, WU Qunying. Precise asymptotics in the complete moment convergence for ρ-mixing sequences[J]. Journal of Hubei University(Natural Science), 2015, 37(5):431-437.
[5] BURTON R M, DEHLING H. Large deviations for some weakly dependent random processes[J]. Statistics & Probability Letters, 1990, 9(5):397-401.
[6] YANG Xiaoyun. The law of the iterated logarithm and stochastic index central limit theorem of B-valued stationary linear processes[J]. Chin Ann of Math A, 1996, 17(6):703-714.
[7] LI Deli, RAO M B, WANG Xiangchen. Complete convergence of moving average processes[J]. Statistics & Probability Letters, 1992, 14(2):111-114.
[8] ZHANG Lixin. Complete convergence of moving average processes under dependence assumptions[J]. Statistics & Probability Letters, 1996, 30(2):165-170.
[9] LIU Weidong, LIN Zhengyan. Precise asymptotics for a new kind of complete moment convergence[J]. Statistics & Probability Letters, 2006, 76(16):1787-1799.
[10] ZANG Qingpei. Convergence rates in the complete moment of moving-average processes[J]. Mathematica Slovaca, 2012, 62(5):967-978.
[11] ZANG Qingpei. A kind of exact rates in complete moment convergence for moving-average processes[J]. Communications in Statistics Theory and Methods, 2013, 42(13):2464-2471.
[12] LI Yunxia, ZHANG Lixin. Precise asymptotics in the law of the iterated logarithm of moving-average processes[J]. Acta Mathematica Sinica, 2006, 22(1):143-156.
[13] XIAO Xiaoyong, YIN Hongwei. Moment convergence rates in the law of logarithm for moving average process under dependence[J]. Stochastics An International Journal of Probability & Stochastic Processes, 2014, 86(1):1-15.
[14] SHAO Qiman. Maximal inequalities for partial sums of ρ-mixing sequences[J]. The Annals of Probability, 1995,15(1):948-965.
[15] MOON H J. The functional CLT for linear processes generated by mixing random variables with infinite variance[J]. Statistics Probability Letters, 2008, 78(14):2095-2101.
[16] LI Yunxia. Precise asymptotics in the law of large numbers of moving-average processes[J]. Acta Math Sci Ser A Chin Ed, 2006, 26(5):675-687.
[1] 张雅静,陶惠玲,李翔,沈爱婷. END随机变量的完全矩收敛和完全积分收敛[J]. 《山东大学学报(理学版)》, 2020, 55(1): 5-11.
[2] 张亚运,吴群英. ρ-混合序列的重对数律矩收敛的精确渐近性[J]. 山东大学学报(理学版), 2017, 52(4): 13-20.
[3] 邓小芹,吴群英. NA序列完全矩收敛的精确渐近性[J]. 山东大学学报(理学版), 2017, 52(1): 102-110.
[4] 张玉,肖犇琼,许可,沈爱婷. NSD随机变量阵列的完全矩收敛性[J]. 山东大学学报(理学版), 2016, 51(6): 30-36.
[5] 钱硕歌, 杨文志. END随机变量移动平均过程的完全矩收敛性[J]. 山东大学学报(理学版), 2015, 50(06): 13-18.
[6] 郑璐璐, 葛梅梅, 刘艳芳, 王学军. φ混合序列的完全矩收敛性[J]. 山东大学学报(理学版), 2015, 50(04): 14-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!