您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (1): 60-67.doi: 10.6040/j.issn.1671-9352.0.2020.205

• • 上一篇    

基于图的悲观多粒度粗糙集粒度约简

张文娟1,李进金1*,林艺东1,2   

  1. 1.闽南师范大学数学与统计学院, 福建 漳州 363000;2.厦门大学数学科学学院, 福建 厦门 361000
  • 发布日期:2021-01-05
  • 作者简介:张文娟(1995— ), 女, 硕士研究生, 研究方向为粗糙集和概念格. E-mail:z_wenjuan@126.com*通信作者简介:李进金(1960— ), 男, 博士, 教授, 博士生导师, 研究方向为拓扑学、粗糙集、概念格等. E-mail:jinjinli@mnnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11871259,11701258);福建省自然科学基金重点项目(2019J01748,2017J01507,2020J02043)

Graph-based granularity reduction in pessimistic multi-granulation rough set

ZHANG Wen-juan1, LI Jin-jin1*, LIN Yi-dong1,2   

  1. 1. School of Mathematics and Statistics, Minnan Normal University, Zhangzhou 363000, Fujian, China;
    2. School of Mathematical Sciences, Xiamen University, Xiamen 361000, Fujian, China
  • Published:2021-01-05

摘要: 结合图的顶点覆盖理论,探讨了悲观多粒度粗糙集粒度约简的新方法。首先提出悲观多粒度粗糙集诱导图的概念, 并给出其粒度约简的图特征,在此基础上,以图的方法刻画粒度的重要度,进而设计基于图的悲观多粒度粗糙集粒度约简的算法;其次,定义悲观多粒度决策粗糙集诱导图的概念,类似地给出其粒度约简的图特征和粒度重要度,设计基于图的悲观多粒度决策粗糙集粒度约简的算法; 最后,利用实例说明悲观下近似多粒度粗糙集粒度约简算法的合理性。

关键词: 粒度约简, 图论, 多粒度粗糙集, 顶点覆盖

Abstract: This paper combines the theory of the vertex cover of graph, and a new method of the granularity reduction of pessimistic multi-granulation rough set is discussed. Firstly, the concept of the graph induced from pessimistic multi-granulation rough set is presented, and the graph characteristic of its granularity reduction is given. On this basis, the significance of granularity is depicted by the method of graph, and then a algorithm about granularity reduction of pessimistic multi-granulation rough set based on graph is designed. Secondly, the concept of the graph induced from multi-granulation decision-theoretic rough set is defined, the graph characteristic of its granularity reduction and the significance of granularity are proposed at the same way, then a algorithm of granularity reduction of pessimistic multi-granulation decision-theoretic rough set based on graph is designed. Finally, it is rational to give an example to illustrate the pessimistic lower approximate multi-granulation rough set algorithm.

Key words: granularity reduction, graph theory, multi-granulation rough set, vertex cover

中图分类号: 

  • TP18
[1] PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982, 11(5):341-356.
[2] QIAN Yuhua, LIANG Jiye, YAO Yiyu, et al. MGRS: a multi-granulation rough set[J]. Information Sciences, 2009, 180(6):949-970.
[3] LIN Guoping, QIAN Yuhua, LI Jinjin. MGRS: neighborhood-based multi-granulation rough sets[J]. International Journal of Approximate Reasoning, 2012, 53(7):1080-1093.
[4] 张明,唐振明,徐维艳,等. 可变多粒度粗糙集模型[J]. 模式识别与人工智能, 2012, 25(4):709-720. ZHANG Ming, TANG Zhenming, XU Weiyan, et al. Variable multigranulation rough set model[J]. Pattern Recognition and Artificial Intelligence, 2012, 25(4):709-720.
[5] 吴志远,钟培华,胡建根,等. 程度多粒度粗糙集[J]. 模糊系统与数学, 2014, 28(3):165-172. WU Zhiyuan, ZHONG Peihua, HU Jiangen, et al. Graded multi-granulation rough sets[J]. Fuzzy Systems and Mathematics, 2014, 28(3):165-172.
[6] 桑妍丽,钱宇华. 一种悲观多粒度粗糙集中的粒度约简算法[J]. 模式识别与人工智能, 2012, 25(3):361-366. SANG Yanli, QIAN Yuhua. A granular space reduction approach to pessimistic multi-granulation rough sets[J]. Pattern Recognition and Artificial Intelligence, 2012, 25(3):361-366.
[7] 孟慧丽,马媛媛,徐久成. 基于信息量的悲观多粒度粗糙集粒度约简[J].南京大学学报(自然科学版), 2015, 51(2):343-348. MENG Huili, MA Yuanyuan, XU Jiucheng. The granularity reduction of pessimistic multi-granulation rough set based on the information quantity[J]. Journal of Nanjing University(Natural Sciences Edition), 2015, 51(2):343-348.
[8] 胡善终,徐怡,何明慧,等. 多粒度粗糙集粒度约简的高效算法[J]. 计算机应用. 2017, 37(12):3391-3399. HU Shanzhong, XU Yi, HE Minghui, et al. Effective algorithm for granulation reduction of multigranulation rough set[J]. Journal of Computer Applications, 2017, 37(12):3391-3399.
[9] CHEN Jinkun, LIN Yaojin, LIN Guoping, et al. Attribute reduction of covering decision systems by hypergraph model[J]. Information Science, 2017, 118:93-104.
[10] 米据生,陈锦坤. 基于图的粗糙集属性约简方法[J]. 西北大学学报(自然科学版), 2019, 49(4):508-516. MI Jusheng, CHEN Jinkun. Graph-based approaches for attribute reduction in rough sets[J]. Journal of Northwest University(Natural Sciences Edition), 2019, 49(4):508-516.
[11] TAN Anhui, WU Weizhi, LI Jinjin, et al. Reduction foundation with multigranulation rough sets using discernibility[J]. Atificial Intelligence Review, 2019, 53(4):2425-2452.
[12] CHEN Jinkun, LIN Yaojin, LIN Guoping, et al. The relationship between attribute reducts in rough sets and minimal vertex covers of graphs[J]. Information Sciences, 2015, 325:87-97.
[13] CHEN Jinkun, LIN Yaojin, LI Jinjin, et al. A rough set method for the minimum vertex cover problem of graphs[J]. Applied Soft Computing, 2016, 42:360-367.
[14] BONDY J A, MURTY U S R. Graph therory with applications[M]. London: Macmillan, 1976.
[15] BONDY J A, MURTY U S R. Graph theory[M]. Beilin: Springer, 2008.
[1] 张海洋,马周明,于佩秋,林梦雷,李进金. 多粒度粗糙集近似集的增量方法[J]. 《山东大学学报(理学版)》, 2020, 55(1): 51-61.
[2] 汪小燕,沈家兰,申元霞. 基于加权粒度和优势关系的程度多粒度粗糙集[J]. 山东大学学报(理学版), 2017, 52(3): 97-104.
[3] 王强,王玉振*. Hamilton框架下Flocking问题控制协议的设计[J]. J4, 2011, 46(7): 70-77.
[4] 祁忠斌,张和平 . 一类Fullerene图的1-共振性[J]. J4, 2008, 43(4): 67-72 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!