《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (1): 51-61.doi: 10.6040/j.issn.1671-9352.1.2019.167
张海洋1,马周明1,2*,于佩秋1,林梦雷1,李进金1
ZHANG Hai-yang1, MA Zhou-ming1,2*, YU Pei-qiu1, LIN Meng-lei1, LI Jin-jin1
摘要: 利用正确分类率来考虑属性论域同时变化时基于向量矩阵的经典多粒度粗糙集上下近似集的动态近似更新。首先讨论了论域缩小属性增加时,多粒度粗糙集的上下近似算子一些性质的改变,并给出了基于向量矩阵的近似集更新方法;其次讨论了论域缩小属性减少时,相应算子性质的变化,并给出了基于向量矩阵的近似集更新方法。新方法有效地缩小了经典多粒度粗糙集近似集更新时的搜索区域。
中图分类号:
[1] PAWLAK Z. Rough sets[J]. International Journal of Computer & Information Sciences, 1982, 11(5):341-356. [2] CHEN W. Evidence of electroconformational changes in membrane proteins: field-induced reductions in intra membrane nonlinear charge movement currents[J]. Bioelectrochemistry, 2004, 63(1):333-335. [3] LEUNG Y, FISCHER M M, WU W Z, et al. A rough set approach for the discovery of classification rules in interval-valued information systems[J]. International Journal of Approximate Reasoning, 2008, 47(2):233-246. [4] LIN Y, HU X, WU X. Quality of information-based source assessment and selection[J]. Neurocomputing, 2014, 133:95-102. [5] QIAN Y, ZHANG H, LI F, et al. Set-based granular computing: a lattice model[J]. International Journal of Approximate Reasoning, 2014, 55(3):834-852. [6] QIAN Y, ZHANG H, SANG Y, et al. Multigranulation decision-theoretic rough sets[J]. International Journal of Approximate Reasoning, 2014, 55(1):225-237. [7] WU W Z, LEUNG Y, SHAO M W. Generalized fuzzy rough approximation operators determined by fuzzy implicators[J]. International Journal of Approximate Reasoning, 2013, 54(9):1388-1409. [8] YAO Y. Probabilistic rough set approximations[J]. International Journal of Approximate Reasoning, 2008, 49(2):255-271. [9] MIN F, HU Q, ZHU W. Feature selection with test cost constraint[J]. International Journal of Approximate Reasoning, 2014, 55(1):167-179. [10] HU Q, SHUANG A, XIAO Y, et al. Robust fuzzy rough classifiers[J]. Fuzzy Sets & Systems, 2011, 183(1):26-43. [11] LIU D, LI T, LIANG D. Incorporating logistic regression to decision-theoretic rough sets for classifications[J]. International Journal of Approximate Reasoning, 2014, 55(1):197-210. [12] LUO C, LI T, CHEN H. Dynamic maintenance of approximations in set-valued ordered decision systems under the attribute generalization[J]. Information Sciences, 2014, 257:210-228. [13] SWINIARSKI R W, SKOWRON A. Rough set methods in feature selection and recognition[J]. Pattern Recognition Letters, 2003, 24(6):833-849. [14] ZHU P, HU Q. Rule extraction from support vector machines based on consistent region covering reduction[J]. Knowledge-Based Systems, 2013, 42(2):1-8. [15] PAWLAK Z, SKOWRON A. Rough sets: some extensions[J]. Information Sciences, 2007, 177(1):28-40. [16] 李进金, 谭安辉, 石素玮. 一类覆盖粗糙直觉模糊集模型的模糊粗糙度和粗糙熵[J]. 山东大学学报(理学版), 2014, 49(8):86-91. LI Jinjin, TAN Anhui, SHI Suwei. Fuzzy roughness and rough entropy of a class of models covering intuitionistic fuzzy sets[J]. Journal of Shandong University(Natural Science), 2014, 49(8):86-91. [17] KATZBERG J D, ZIARKO W. Variable precision rough sets with asymmetric bounds[M] // Rough Sets, Fuzzy Sets and Knowledge Discovery. London: Springer, 1994: 167-177. [18] YAO Y. Three-way decisions with probabilistic rough sets[J]. Information Sciences, 2010, 180(3):341-353. [19] WU W Z, MI J S, ZHANG W X. Generalized fuzzy rough sets[J]. Information Sciences, 2003, 151(3):263-282. [20] ZHAO S, TSANG E C C, CHEN D. The model of fuzzy variable recision rough sets[J]. IEEE Transanctions on Fuzzy System, 2009, 17(2):451-467. [21] QIAN Y, LIANG J, YAO Y, et al. MGRS: a multi-granulation rough set ☆[J]. Information Sciences An International Journal, 2010, 180(6):949-970. [22] QIAN Y, LIANG J, PEDRYCZ W, et al. Positive approximation: an accelerator for attribute reduction in rough set theory[J]. Artificial Intelligence, 2010, 174(9/10):597-618. [23] LIN G, QIAN Y, LI J. NMGRS: neighborhood-based multigranulation rough sets[J]. International Journal of Approximate Reasoning, 2012, 53(7):1080-1093. [24] FENG T, MI J S. Variable precision multigranulation decision-theoretic fuzzy rough sets[J]. Knowledge-Based Systems, 2016, 91:93-101. [25] 胡谦, 米据生, 李磊军. 多粒度模糊粗糙近似算子的信任结构与属性约简[J]. 山东大学学报(理学版), 2017,52(7):30-36. HU Qian, MI Jusheng, LI Leijun. Trust structure and attribute reduction of multi-granularity fuzzy rough approximation operator[J]. Journal of Shandong University(Natural Science), 2017, 52(7):30-36. [26] HU C, LIU S, LIU G. Matrix-based approaches for dynamic updating approximations in multigranulation rough sets[J]. Knowledge-Based Systems, 2017, 122:51-63. [27] JU H, YANG X, SONG X, et al. Dynamic updating multigranulation fuzzy rough set: approximations and reducts[J]. International Journal of Machine Learning and Cybernetics, 2014, 5(6):981-990. [28] 陈红梅. 粗糙集中基于粒计算的动态知识更新方法研究[D]. 成都:西南交通大学, 2013. CHEN Hongmei. Research on dynamic knowledge updating method based on grain computation in rough set [D]. Chengdu: Southwest Jiaotong University, 2013. [29] 刘财辉, 苗夺谦. 基于矩阵的粗糙集上、下近似求解算法[J]. 计算机应用研究, 2011, 28(5):1628-1630. LIU Caihui, MIAO Duoqian. Rough set approximation algorithm based on matrix[J]. Computer Application Research, 2011, 28(5):1628-1630. [30] YANG X, QI Y, YU H, et al. Updating multigranulation rough approximations with increasing of granular structures[J]. Knowledge-Based Systems, 2014, 64:59-69. [31] HU C, LIU S, HUANG X. Dynamic updating approximations in multigranulation rough sets while refining or coarsening attribute values[J]. Knowledge-Based Systems, 2017, 130(15):62-73. [32] 胡成祥, 赵国柱. 优势关系多粒度粗糙集中近似集动态更新方法[J]. 中国科学技术大学学报, 2017(1):43-50. HU Chengxiang, ZHAO Guozhu. Multi-granularity rough set approximation set dynamic update method[J]. Journal of University of Science and Technology of China, 2017(1):40-47. [33] ZHANG J, LI T, RUAN D, et al. Neighborhood rough sets for dynamic data mining[J]. International Journal of Intelligent Systems, 2012, 27(4):317-342. |
[1] | 汪小燕,沈家兰,申元霞. 基于加权粒度和优势关系的程度多粒度粗糙集[J]. 山东大学学报(理学版), 2017, 52(3): 97-104. |
|