您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (1): 51-61.doi: 10.6040/j.issn.1671-9352.1.2019.167

• • 上一篇    下一篇

多粒度粗糙集近似集的增量方法

张海洋1,马周明1,2*,于佩秋1,林梦雷1,李进金1   

  1. 1.闽南师范大学数学与统计学院, 福建 漳州 363000;2.数字福建气象大数据研究所, 福建 漳州 363000
  • 发布日期:2020-01-10
  • 作者简介:张海洋(1995— ),男, 硕士研究生,研究方向为粗糙集. E-mail:1913570847@qq.com*通信作者简介:马周明(1979— ),男, 博士,副教授,研究方向为人工智能、粒计算和粗糙集. E-mail:44842802@qq.com
  • 基金资助:
    国家自然科学基金资助项目(A011404,61573127,61672272,61603173,11701258);福建省自然科学基金资助项目(2017J01507,2019J01748)

Incremental method for approximating sets of multi-granularity rough sets

ZHANG Hai-yang1, MA Zhou-ming1,2*, YU Pei-qiu1, LIN Meng-lei1, LI Jin-jin1   

  1. 1. School of Mathematics and Statistics, Minnan Normal University, Zhangzhou 363000, Fujian, China;
    2. Digital Fujian Meteorological Big Data Research Institute, Zhangzhou 363000, Fujian, China
  • Published:2020-01-10

摘要: 利用正确分类率来考虑属性论域同时变化时基于向量矩阵的经典多粒度粗糙集上下近似集的动态近似更新。首先讨论了论域缩小属性增加时,多粒度粗糙集的上下近似算子一些性质的改变,并给出了基于向量矩阵的近似集更新方法;其次讨论了论域缩小属性减少时,相应算子性质的变化,并给出了基于向量矩阵的近似集更新方法。新方法有效地缩小了经典多粒度粗糙集近似集更新时的搜索区域。

关键词: 增量计算, 近似集更新, 多粒度粗糙集, 向量矩阵

Abstract: Dynamic updating the upper and lower approximations in multi-granulation rough sets based on column matrix mainly use the relative correct classification rate to consider the varying attribute values and varying universe simultaneously. First, we discuss some properties of upper and lower approximation operators of multi-granulation rough sets while the universe decreasing and adding attributes, and give an updating method for approximations based on column matrix. Second, we discuss some properties of approximation operators while the universe decreasing and adding attributes, and give an updating method based on column matrix. The methods we proposed effectively shrink the searching region when updating the approximations of the multi-granulation rough sets.

Key words: incremental computing, updating approximation, multi-granulation rough set, column matrix

中图分类号: 

  • TP18
[1] PAWLAK Z. Rough sets[J]. International Journal of Computer & Information Sciences, 1982, 11(5):341-356.
[2] CHEN W. Evidence of electroconformational changes in membrane proteins: field-induced reductions in intra membrane nonlinear charge movement currents[J]. Bioelectrochemistry, 2004, 63(1):333-335.
[3] LEUNG Y, FISCHER M M, WU W Z, et al. A rough set approach for the discovery of classification rules in interval-valued information systems[J]. International Journal of Approximate Reasoning, 2008, 47(2):233-246.
[4] LIN Y, HU X, WU X. Quality of information-based source assessment and selection[J]. Neurocomputing, 2014, 133:95-102.
[5] QIAN Y, ZHANG H, LI F, et al. Set-based granular computing: a lattice model[J]. International Journal of Approximate Reasoning, 2014, 55(3):834-852.
[6] QIAN Y, ZHANG H, SANG Y, et al. Multigranulation decision-theoretic rough sets[J]. International Journal of Approximate Reasoning, 2014, 55(1):225-237.
[7] WU W Z, LEUNG Y, SHAO M W. Generalized fuzzy rough approximation operators determined by fuzzy implicators[J]. International Journal of Approximate Reasoning, 2013, 54(9):1388-1409.
[8] YAO Y. Probabilistic rough set approximations[J]. International Journal of Approximate Reasoning, 2008, 49(2):255-271.
[9] MIN F, HU Q, ZHU W. Feature selection with test cost constraint[J]. International Journal of Approximate Reasoning, 2014, 55(1):167-179.
[10] HU Q, SHUANG A, XIAO Y, et al. Robust fuzzy rough classifiers[J]. Fuzzy Sets & Systems, 2011, 183(1):26-43.
[11] LIU D, LI T, LIANG D. Incorporating logistic regression to decision-theoretic rough sets for classifications[J]. International Journal of Approximate Reasoning, 2014, 55(1):197-210.
[12] LUO C, LI T, CHEN H. Dynamic maintenance of approximations in set-valued ordered decision systems under the attribute generalization[J]. Information Sciences, 2014, 257:210-228.
[13] SWINIARSKI R W, SKOWRON A. Rough set methods in feature selection and recognition[J]. Pattern Recognition Letters, 2003, 24(6):833-849.
[14] ZHU P, HU Q. Rule extraction from support vector machines based on consistent region covering reduction[J]. Knowledge-Based Systems, 2013, 42(2):1-8.
[15] PAWLAK Z, SKOWRON A. Rough sets: some extensions[J]. Information Sciences, 2007, 177(1):28-40.
[16] 李进金, 谭安辉, 石素玮. 一类覆盖粗糙直觉模糊集模型的模糊粗糙度和粗糙熵[J]. 山东大学学报(理学版), 2014, 49(8):86-91. LI Jinjin, TAN Anhui, SHI Suwei. Fuzzy roughness and rough entropy of a class of models covering intuitionistic fuzzy sets[J]. Journal of Shandong University(Natural Science), 2014, 49(8):86-91.
[17] KATZBERG J D, ZIARKO W. Variable precision rough sets with asymmetric bounds[M] // Rough Sets, Fuzzy Sets and Knowledge Discovery. London: Springer, 1994: 167-177.
[18] YAO Y. Three-way decisions with probabilistic rough sets[J]. Information Sciences, 2010, 180(3):341-353.
[19] WU W Z, MI J S, ZHANG W X. Generalized fuzzy rough sets[J]. Information Sciences, 2003, 151(3):263-282.
[20] ZHAO S, TSANG E C C, CHEN D. The model of fuzzy variable recision rough sets[J]. IEEE Transanctions on Fuzzy System, 2009, 17(2):451-467.
[21] QIAN Y, LIANG J, YAO Y, et al. MGRS: a multi-granulation rough set ☆[J]. Information Sciences An International Journal, 2010, 180(6):949-970.
[22] QIAN Y, LIANG J, PEDRYCZ W, et al. Positive approximation: an accelerator for attribute reduction in rough set theory[J]. Artificial Intelligence, 2010, 174(9/10):597-618.
[23] LIN G, QIAN Y, LI J. NMGRS: neighborhood-based multigranulation rough sets[J]. International Journal of Approximate Reasoning, 2012, 53(7):1080-1093.
[24] FENG T, MI J S. Variable precision multigranulation decision-theoretic fuzzy rough sets[J]. Knowledge-Based Systems, 2016, 91:93-101.
[25] 胡谦, 米据生, 李磊军. 多粒度模糊粗糙近似算子的信任结构与属性约简[J]. 山东大学学报(理学版), 2017,52(7):30-36. HU Qian, MI Jusheng, LI Leijun. Trust structure and attribute reduction of multi-granularity fuzzy rough approximation operator[J]. Journal of Shandong University(Natural Science), 2017, 52(7):30-36.
[26] HU C, LIU S, LIU G. Matrix-based approaches for dynamic updating approximations in multigranulation rough sets[J]. Knowledge-Based Systems, 2017, 122:51-63.
[27] JU H, YANG X, SONG X, et al. Dynamic updating multigranulation fuzzy rough set: approximations and reducts[J]. International Journal of Machine Learning and Cybernetics, 2014, 5(6):981-990.
[28] 陈红梅. 粗糙集中基于粒计算的动态知识更新方法研究[D]. 成都:西南交通大学, 2013. CHEN Hongmei. Research on dynamic knowledge updating method based on grain computation in rough set [D]. Chengdu: Southwest Jiaotong University, 2013.
[29] 刘财辉, 苗夺谦. 基于矩阵的粗糙集上、下近似求解算法[J]. 计算机应用研究, 2011, 28(5):1628-1630. LIU Caihui, MIAO Duoqian. Rough set approximation algorithm based on matrix[J]. Computer Application Research, 2011, 28(5):1628-1630.
[30] YANG X, QI Y, YU H, et al. Updating multigranulation rough approximations with increasing of granular structures[J]. Knowledge-Based Systems, 2014, 64:59-69.
[31] HU C, LIU S, HUANG X. Dynamic updating approximations in multigranulation rough sets while refining or coarsening attribute values[J]. Knowledge-Based Systems, 2017, 130(15):62-73.
[32] 胡成祥, 赵国柱. 优势关系多粒度粗糙集中近似集动态更新方法[J]. 中国科学技术大学学报, 2017(1):43-50. HU Chengxiang, ZHAO Guozhu. Multi-granularity rough set approximation set dynamic update method[J]. Journal of University of Science and Technology of China, 2017(1):40-47.
[33] ZHANG J, LI T, RUAN D, et al. Neighborhood rough sets for dynamic data mining[J]. International Journal of Intelligent Systems, 2012, 27(4):317-342.
[1] 汪小燕,沈家兰,申元霞. 基于加权粒度和优势关系的程度多粒度粗糙集[J]. 山东大学学报(理学版), 2017, 52(3): 97-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈宏宇1, 张丽2. 不含弦5-圈和弦6-圈的平面图的线性2荫度[J]. 山东大学学报(理学版), 2014, 49(06): 26 -30 .
[2] 叶晓鸣,陈兴蜀,杨力,王文贤,朱毅,邵国林,梁刚. 基于图演化事件的主机群异常检测模型[J]. 山东大学学报(理学版), 2018, 53(9): 1 -11 .
[3] 巫朝霞,王佳琪. 一种无线单频谱安全拍卖算法[J]. 《山东大学学报(理学版)》, 2018, 53(11): 51 -55 .
[4] 王苒群,左连翠. 不含4-圈和5-圈的平面图的线性2-荫度[J]. J4, 2012, 47(6): 71 -75 .
[5] 朱林. A4型箭图的可分单态射表示和RSS等价[J]. 山东大学学报(理学版), 2018, 53(2): 1 -8 .
[6] 刘园园,曹德欣,秦军. 非线性二层混合整数规划问题的区间算法[J]. 山东大学学报(理学版), 2018, 53(2): 9 -17 .
[7] 刘方圆,孟宪佳,汤战勇,房鼎益,龚晓庆. 基于smali代码混淆的Android应用保护方法Symbol`@@[J]. 山东大学学报(理学版), 2017, 52(3): 44 -50 .
[8] 廖祥文,张凌鹰,魏晶晶,桂林,程学旗,陈国龙. 融合时间特征的社交媒介用户影响力分析[J]. 山东大学学报(理学版), 2018, 53(3): 1 -12 .
[9] 顾沈明,陆瑾璐,吴伟志,庄宇斌. 广义多尺度决策系统的局部最优粒度选择[J]. 山东大学学报(理学版), 2018, 53(8): 1 -8 .
[10] 万鹏飞,高兴宝. 一种解多目标优化问题的基于分解的人工蜂群算法[J]. 山东大学学报 (理学版), 2018, 53(11): 56 -66 .