您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (1): 68-74.doi: 10.6040/j.issn.1671-9352.4.2020.156

•   • 上一篇    下一篇

基于依赖空间的F-C变精度概念格

张静(),马建敏*()   

  1. 长安大学理学院, 陕西 西安 710064
  • 收稿日期:2020-06-15 出版日期:2021-01-01 发布日期:2021-01-05
  • 通讯作者: 马建敏 E-mail:jiing_z@126.com;cjm-zm@126.com
  • 作者简介:张静(1996—),女,硕士研究生,研究方向为粗糙集与概念格. E-mail: jiing_z@126.com
  • 基金资助:
    国家自然科学基金资助项目(61772019);国家自然科学基金资助项目(61603278);国家自然科学基金资助项目(71701021)

F-C variable threshold concept lattices based on dependence spaces

Jing ZHANG(),Jian-min MA*()   

  1. School of Science, Chang'an University, Xi'an 710064, Shaanxi, China
  • Received:2020-06-15 Online:2021-01-01 Published:2021-01-05
  • Contact: Jian-min MA E-mail:jiing_z@126.com;cjm-zm@126.com

摘要:

在模糊形式背景中, 首先基于变精度算子定义属性幂集上的一致关系, 引入依赖空间; 根据一致关系构造闭包算子, 研究闭包算子与变精度概念之间的关系; 进一步通过研究闭包算子的不动点和变精度概念的内涵之间的关系, 给出变精度概念格的构造算法; 最后通过实验验证本文方法的可行性。

关键词: 模糊形式背景, 依赖空间, 一致关系, 闭包算子

Abstract:

For a fuzzy formal context, a congruence relation is defined based on a variable precision operator on the power set of attributes. A congruence relation is obtained. Based on it, a dependence space is shown. By constructing a closure operator according to the congruence relation, the relationships between the closure operator and the variable precision concepts are discussed. Furthermore, applying the properties of the closure operator, we get that any fixed point of the closure operator is exactly the intension of some variable precision concept. Based on these, an algorithm to construct all variable precision concepts is obtained. Experiments are used to verify the feasibility of the proposed method.

Key words: fuzzy formal context, dependence space, congruence relation, closure operator

中图分类号: 

  • TP18

表1

模糊形式背景"

U a b c d e
x1 0.6 1.0 0.6 0.7 1.0
x2 0.7 0.8 1.0 0.8 0.5
x3 1.0 0.7 1.0 0.6 0.3
x4 1.0 0.6 0.9 1.0 0.2

表2

δ=1的F-C变精度概念内涵"

B 1 2 3 4
abcde 0.6 0.5 0.3 0.2
ac 0.6 0.7 1.0 0.9
be 1.0 0.5 0.3 0.2
ad 0.6 0.7 0.6 1.0
c 0.6 1.0 1.0 0.9
a 0.6 0.7 1.0 1.0
Ø 1.0 1.0 1.0 1.0

图1

δ为1.0、0.8、0.7时F-C变精度概念格"

表3

对象集增加, 属性集不变的算法运行时间对比(|A|=5)"

|U| 5 10 15 20 25
Algorithm in this paper 0.253 1.091 8.875 46.752 117.323
Original algorithm 0.527 7.169 34.893 106.605 319.498

表4

属性集增加, 对象集不变的算法运行时间对比(|U|=5)"

|A| 5 10 15 20 25
Algorithm in this paper 0.467 0.951 0.998 1.115 1.214
Original algorithm 0.625 6.362 37.214 124.872 356.699

图2

运行时间 红色折线为本文算法的运行时间, 蓝色折线为原始构建概念的算法运行时间。"

1 WILLE R . Restructuring lattice theory: an approach based on hierarchies of concepts[J]. Formal Concept Analysis, 1982, 5548 (83): 314- 339.
2 GANTER B , WILLE R . Formal concept analysis: mathematical foundations[M]. New York: Springer-Verlag, 1999: 157- 192.
3 JARVINEN J . Difference functions of dependences spaces[J]. Acta Cybernetica, 2001, 14 (4): 619- 630.
4 ZOU Caifeng , DENG Huifang , WAN Jiafu , et al. Mining and updating association rules based on fuzzy concept lattice[J]. Future Generation Computer Systems, 2018, 82, 698- 706.
doi: 10.1016/j.future.2017.11.018
5 李金海, 吴伟志, 邓硕. 形式概念分析的多粒度标记理论[J]. 山东大学学报(理学版), 2019, 54 (2): 30- 40.
LI Jinhai , WU Weizhi , DENG Shuo . Multi-scale theory in formal concept analysis[J]. Journal of Shandong University (Natural Science), 2019, 54 (2): 30- 40.
6 BURUSCO A , FUENTES R . The study of the L-fuzzy concept lattice[J]. Mathware and Soft Computing, 1994, 1 (3): 209- 218.
7 BELOHLAVEK R . Concept lattices and order in fuzzy logic[J]. Annals of Pure and Applied Logic, 2004, 128 (1): 277- 298.
8 ZHANG Wenxiu , MA Jianmin , FAN Shiqing . Variable threshold concept lattices[J]. Information Sciences, 2007, 177 (22): 4883- 4892.
doi: 10.1016/j.ins.2007.05.031
9 仇国芳, 朱朝晖. 基于经典-模糊变精度概念格的决策规则获取及其推理算法[J]. 计算机科学, 2009, 36 (12): 216- 218.
doi: 10.3969/j.issn.1002-137X.2009.12.054
QIU Guofang , ZHU Zhaohui . Acquisitions to decision rules and algorithms to inferences based on crisp-fuzzy variable threshold concept lattices[J]. Computer Science, 2009, 36 (12): 216- 218.
doi: 10.3969/j.issn.1002-137X.2009.12.054
10 YANG Yafeng . Parallel construction of variable precision concept lattice in fuzzy formal context[J]. AASRI Procedia, 2013, 5, 214- 219.
doi: 10.1016/j.aasri.2013.10.081
11 范世青, 张文修. 模糊概念格与模糊推理[J]. 模糊系统与数学, 2006, 20 (1): 11- 17.
doi: 10.3969/j.issn.1001-7402.2006.01.002
FAN Shiqing , ZHANG Wenxiu . Fuzzy concept lattice and fuzzy reasoning[J]. Fuzzy Systems and Mathematics, 2006, 20 (1): 11- 17.
doi: 10.3969/j.issn.1001-7402.2006.01.002
12 ZHUANG Ying , LIU Wenqi , WU Chinchia , et al. Pawlak algebra and approximate structure on fuzzy lattice[J]. The Scientific World Journal, 2014, 2014, 697- 706.
13 崔芳婷, 王黎明, 张卓. 基于约束的模糊概念格构造算法[J]. 计算机科学, 2015, 42 (8): 288- 293.
CUI Fangting , WANG Liming , ZHANG Zhuo . Construction algorithm of fuzzy concept lattice based on constraints[J]. Computer Science, 2015, 42 (8): 288- 293.
14 BOFFA S, MAIO C D, NOLA A D, et al. Unifying fuzzy concept lattice construction methods[C]//2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). [S. l]: IEEE, 2016.
15 PREM K , ASWANI C , LI Jinhai . Knowledge representation using interval-valued fuzzy formal concept lattice[J]. Soft Computing, 2016, 20 (4): 1485- 1502.
doi: 10.1007/s00500-015-1600-1
16 MAO Hua , ZHENG Zhen . The construction of fuzzy concept lattice based on weighted complete graph[J]. Journal of Intelligent and Fuzzy Systems, 2019, 36 (6): 5797- 5805.
doi: 10.3233/JIFS-181642
17 刘营营, 米据生, 梁美社, 等. 三支区间集概念格[J]. 山东大学学报(理学版), 2020, 55 (3): 70- 80.
LIU Yingying , MI Jusheng , LIANG Meishe , et al. Three-way interval-set concept lattice[J]. Journal of Shandong University (Natural Science), 2020, 55 (3): 70- 80.
18 林艺东, 李进金, 张呈玲. 基于矩阵的模糊-经典概念格属性约简[J]. 模式识别与人工智能, 2020, 33 (1): 21- 31.
LIN Yidong , LI Jinjin , ZHANG Chengling . Fuzzy-crisp concept lattice attribute reduction based on matrix[J]. Pattern Recognition and Artificial Intelligence, 2020, 33 (1): 21- 31.
19 NOVOTNY M . Dependence spaces of information system[J]. Incomplete Information: Rough Set Analysis, 1998, 13, 193- 246.
20 MA Jianmin, ZHANG Wenxiu, WANG Xia. Dependence space of concept lattices based on rough set[C]//2006 IEEE International Conference on Granular Computing. Atlanta: IEEE, 2006: 200-204.
21 WANG Xia . Approaches to attribute reduction in concept lattices based on rough set theory[J]. International Journal of Hybrid Information Technology, 2012, 5 (2): 67- 79.
22 包永伟, 王霞, 吴伟志. 两类概念格的依赖空间理论[J]. 计算机科学, 2014, 41 (2): 236- 239.
doi: 10.3969/j.issn.1002-137X.2014.02.051
BAO Yongwei , WANG Xia , WU Weizhi . Dependence space based on two types of concept lattices[J]. Computer Science, 2014, 41 (2): 236- 239.
doi: 10.3969/j.issn.1002-137X.2014.02.051
23 SHU Chang , MO Zhiwen , TANG Xiao , et al. Attribute reduction of lattice-value information system based on L-dependence spaces[J]. Fuzzy Information & Engineering and Operations Research & Management, 2014, 211, 107- 112.
24 MA Jianmin , ZHANG Wenxiu , CAI Sheng . Variable threshold concept lattice and dependence space[J]. Fuzzy Systems and Knowledge Discovery, 2006, 4223, 109- 118.
25 WARD M , DILWORTH R P . Residuated lattices[J]. Trans Amer Math Soc, 1939, 45, 335- 354.
doi: 10.1090/S0002-9947-1939-1501995-3
26 裴道武. 剩余格与正则剩余格的特征定理[J]. 数学学报, 2002, 45 (2): 271- 278.
doi: 10.3321/j.issn:0583-1431.2002.02.008
PEI Daowu . The characterization of residuated lattices and regular residuated lattices[J]. Journal of Mathematics, 2002, 45 (2): 271- 278.
doi: 10.3321/j.issn:0583-1431.2002.02.008
27 BURUSCO A , FUENTES R . The study on interval-valued contexts[J]. Fuzzy Sets and Systems, 2001, 121 (3): 439- 452.
doi: 10.1016/S0165-0114(00)00059-2
[1] 李双伶,岳晓威,秦克云. 多源形式背景中的粒结构[J]. 《山东大学学报(理学版)》, 2020, 55(5): 46-54.
[2] 姬儒雅,魏玲,任睿思,赵思雨. 毕达哥拉斯模糊三支概念格[J]. 《山东大学学报(理学版)》, 2020, 55(11): 58-65.
[3] 卢涛,王习娟,贺伟. Topos中完备偏序对象上的算子理论[J]. 山东大学学报(理学版), 2016, 51(2): 64-71.
[4] 余承依,李进金*. 变精度粗糙集β下近似属性约简[J]. J4, 2011, 46(11): 17-21.
[5] 张艳霞,李生刚*,鲜路. M-闭包空间的积、和与商[J]. J4, 2010, 45(4): 74-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 石长光 . Faddeev模型中的多孤立子解[J]. J4, 2007, 42(7): 38 -40 .
[2] 董炯,曹小红. 算子立方的Weyl定理及其紧摄动[J]. 山东大学学报(理学版), 2016, 51(8): 15 -21 .
[3] . 银杏叶提取物中总黄酮含量的分析方法研究[J]. J4, 2009, 44(5): 40 -44 .
[4] 刘汝军,曹玉霞,周 平 . 利用小反馈实现离散非线性混沌系统的反控制[J]. J4, 2007, 42(7): 30 -32 .
[5] 许万银. 一类拟线性Neumann问题的多重解[J]. J4, 2009, 44(10): 39 -42 .
[6] 杜瑞颖, 杨勇, 陈晶, 王持恒. 一种基于相似度的高效网络流量识别方案[J]. 山东大学学报(理学版), 2014, 49(09): 109 -114 .
[7] 郭腓望,张习勇,韩文报. 一种完全非线性函数的构造[J]. J4, 2011, 46(3): 26 -30 .
[8] 范铭, 刘均, 郑庆华, 田振洲, 庄尔悦, 刘烃. 基于栈行为动态胎记的软件抄袭检测方法[J]. 山东大学学报(理学版), 2014, 49(09): 9 -16 .
[9] 马嘉赛,张永军 . 最小方方法的一种优化方法[J]. J4, 2006, 41(3): 104 -107 .
[10] 张凤霞1,李莹1,2,郭文彬1,赵建立1. 分块Hermite阵与斜Hermite阵的最大秩与最小秩[J]. J4, 2010, 45(4): 106 -110 .