您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (2): 98-110.doi: 10.6040/j.issn.1671-9352.0.2020.343

• • 上一篇    

集合优化问题解集的稳定性和扩展适定性

孟旭东   

  1. 南昌航空大学科技学院, 江西 共青城 332020
  • 发布日期:2022-01-07
  • 作者简介:孟旭东(1982— ),男,硕士,副教授,研究方向为向量均衡与向量优化理论及其应用. E-mail:mxudongm@163.com
  • 基金资助:
    江西省教育厅科学技术重点研究项目(GJJ181565,GJJ191614);江西省教育厅科学技术研究项目(GJJ161597,GJJ218701)

Stability and extended well-posedness of the solution sets for set optimization problems

MENG Xu-dong   

  1. Science and Technology College of Nanchang Hangkong University, Gongqingcheng 332020, Jiangxi, China
  • Published:2022-01-07

摘要: 研究了集合优化问题近似解集的稳定性和扩展适定性。当目标函数具连续性和广义锥-拟凸性时,讨论了集合优化问题近似解集的Painlevé-Kuratowski上收敛和下收敛。结合适当假设条件,分析了集合优化问题的扩展适定性和弱扩展适定性。

关键词: 集合优化问题, Painlevé-Kuratowski收敛, 稳定性, 扩展适定性

Abstract: The stability and extended well-posedness of the approximate solution sets for set optimization problems are studied. The Painlevé-Kuratowski upper convergence and lower convergence of the approximate solution sets for set optimization problems are discussed by assuming the continuity and generalized cone quasi-convexity of objective function. The extended well-posedness and weak extended well-posedness for set optimization problems are analyzed under some appropriate assumptions.

Key words: set optimization problem, Painlevé-Kuratowski convergence, stability, extended well-posedness

中图分类号: 

  • O221.3
[1] HUANG Xuexiang. Stability in vector-valued and set-valued optimization[J]. Mathematical Methods of Operations Research, 2000, 52(2):185-193.
[2] LUCCHETTI R E, MIGLIERINA E. Stability for convex vector optimization problems[J]. Optimization, 2004, 53(5/6):517-528.
[3] CRESPI G P, PAPALIA M, ROCCA M. Extended well-posedness of quasiconvex vector optimization problems[J]. Journal of Optimization Theory and Applications, 2009, 141(2):285-297.
[4] LALITHA C S, CHATTERJEE P. Stability for properly quasiconvex vector optimization problem[J].Journal of Optimization Theory and Applications, 2012, 155(2):492-506.
[5] LALITHA C S, CHATTERJEE P. Stability and scalarization of weak efficient, efficient and henig proper efficient sets using generalized quasiconvexities[J]. Journal of Optimization Theory and Applications, 2012, 155(3):941-961.
[6] FANG Z M, LI S J. Painlevé-Kuratowski convergences of the solution sets to perturbed generalized systems[J]. Acta Mathematicae Applicatae Sinica, 2012, 28(2):361-370
[7] PENG Zaiyun, YANG Xinmin. Painlevé-Kuratowski convergences of the solution sets for perturbed vector equilibrium problems without monotonicity[J]. Acta Mathematicae Applicatae Sinica, 2014, 30(4):845-858.
[8] ZHAO Yong, PENG Zaiyun, YANG Xinmin. Semicontinuity and convergence for vector optimization problems with approximate equilibrium constraints[J]. Optimization, 2016, 65(7):1397-1415.
[9] ANH L Q, BANTAOJAI T, HUNG N, et al. Painlevé-Kuratowski convergences of the solution sets for generalized vector quasi-equilibrium problems[J]. Computational and Applied Mathematics, 2018, 37(3):3832-3845.
[10] KHAN A A, TAMMER C, ZALINESCU C. Set-valued optimization[M]. Berlin: Springer Heidelberg, 2015.
[11] GUTIÉRREZ C, MIGLIERINA E, MOLHO E, et al. Convergence of solutions of a set optimization problem in the image space[J]. Journal of Optimization Theory and Applications, 2016, 170(2):358-371.
[12] XU Dongyang, LI Shengjie. Continuity of the solution set mappings to a parametric set optimization problem[J]. Optimization Letters, 2014, 8(8):2315-2327.
[13] HAN Y, HUANG N J. Well-posedness and stability of solutions for set optimization problems[J]. Optimization, 2017, 66(1):17-33.
[14] HAN Y, HUANG N J. Continuity and convexity of a nonlinear scalarizing function in set optimization problems with applications[J]. Journal of Optimization Theory and Applications, 2018, 177(3):679-695.
[15] HERNÁNDEZ E, RODRÍGUEZ-MARÍN L. Nonconvex scalarization in set optimization with set-valued maps[J]. Journal of Mathematical Analysis and Applications, 2007, 325(1):1-18.
[16] KHOSHKHABAR-AMIRANLOO S. Stability of minimal solutions to parametric set optimization problems[J]. Applicable Analysis, 2018, 97(14):2510-2522.
[17] KARUNA, LALITHA C S. External and internal stability in set optimization[J]. Optimization, 2019, 68(4):833-852.
[18] ZHANG W Y, LI S J, TEO K L. Well-posedness for set optimization problems[J]. Nonlinear Analysis: Theory, Methods & Applications, 2009, 71(9):3769-3778.
[19] GUTIÉRREZ C, MIGLIERINA E, MOLHO E, et al. Pointwise well-posedness in set optimization with cone proper sets[J]. Nonlinear Analysis: Theory, Methods & Applications, 2012, 75(4):1822-1833.
[20] LONG Xianjun, PENG Jiawen, PENG Zaiyun. Scalarization and pointwise well-posedness for set optimization problems[J]. Journal of Global Optimization, 2015, 62(4):763-773.
[21] CRESPI G, KUROIWA D, ROCCA M. Convexity and global well-posedness in set-optimization[J/OL]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.646.2210&rep=rep1&type=pdf.
[22] CRESPI G P, DHINGRA M, LALITHA C S. Pointwise and global well-posedness in set optimization: a direct approach[J]. Annals of Operations Research, 2018, 269(1/2):149-166.
[23] ZOLEZZI T. Extended well-posedness of optimization problems[J]. Journal of Optimization Theory and Applications, 1996, 91(1):257-266.
[24] HUANG X X. Extended well-posedness properties of vector optimization problems[J]. Journal of Optimization Theory and Applications, 2000, 106(1):165-182.
[25] HUANG X X. Extended and strongly extended well-posedness of set-valued optimization problems[J]. Mathematical Methods of Operations Research, 2001, 53(1):101-116.
[26] LUC D T. Theory of vector optimization, lecture notes in economics and mathematical systems, vol.319[M]. Berlin: Springer, 1989.
[27] ROCKAFELLAR R T, WETS R J B. Variational analysis[M]. Berlin, Heidelberg: Springer Heidelberg, 1998.
[28] KUARTOWSKI K. Topology, vol 1 and 2[M]. New York: Academic Press, 1968.
[29] AUBIN J P, EKELAND I. Applied nonlinear analysis[M]. New York: Wiley, 1984.
[30] GÖPFERT A, RIAHI H, TAMMER C, et al. Variational methods in partially ordered spaces[M]. Berlin: Springer, 2003.
[31] HAN Yu. Nonlinear scalarizing functions in set optimization[J]. Optimization, 2019, 68(9):1685-1718.
[1] 张钰倩,张太雷. 具有复发效应的SEAIR模型及在新冠肺炎传染病中的应用[J]. 《山东大学学报(理学版)》, 2022, 57(1): 56-68.
[2] 沈维,张存华. 时滞食饵-捕食系统的多次稳定性切换和Hopf分支[J]. 《山东大学学报(理学版)》, 2022, 57(1): 42-49.
[3] 朱彦兰,周伟,褚童,李文娜. 管理委托下的双寡头博弈的复杂动力学分析[J]. 《山东大学学报(理学版)》, 2021, 56(7): 32-45.
[4] 周艳,张存华. 具有集群行为的捕食者-食饵反应扩散系统的稳定性和Turing不稳定性[J]. 《山东大学学报(理学版)》, 2021, 56(7): 73-81.
[5] 郭慧瑛,杨富霞,张翠萍. 有有限Ext-强Ding投射维数的模的稳定性[J]. 《山东大学学报(理学版)》, 2021, 56(4): 31-38.
[6] 唐洁,魏玲,任睿思,赵思雨. 基于可能属性分析的粒描述[J]. 《山东大学学报(理学版)》, 2021, 56(1): 75-82.
[7] 阳忠亮, 郭改慧. 一类带有B-D功能反应的捕食-食饵模型的分支分析[J]. 《山东大学学报(理学版)》, 2020, 55(7): 9-15.
[8] 温晓,刘琪,高振,曾维新,吕咸青. 局部非侵入式约化基模型在瑞利-泰勒不稳定中的应用[J]. 《山东大学学报(理学版)》, 2020, 55(2): 109-117.
[9] 陈璐,张晓光. 一类自适应网络上的传染病模型研究[J]. 《山东大学学报(理学版)》, 2019, 54(9): 76-82.
[10] 王占平,袁恺英. 相对于余挠对的强Gorenstein内射模[J]. 《山东大学学报(理学版)》, 2019, 54(8): 102-107.
[11] 张瑜,赵仁育. Gorenstein FP-投射模及其稳定性[J]. 《山东大学学报(理学版)》, 2019, 54(12): 79-85.
[12] 刘华,叶勇,魏玉梅,杨鹏,马明,冶建华,马娅磊. 一类离散宿主-寄生物模型动态研究[J]. 山东大学学报(理学版), 2018, 53(7): 30-38.
[13] 李翠平,高兴宝. 求解具有约束的l1-范数问题的神经网络模型[J]. 《山东大学学报(理学版)》, 2018, 53(12): 90-98.
[14] 冯孝周,徐敏,王国珲. 具有B-D反应项与毒素影响的捕食系统的共存解[J]. 《山东大学学报(理学版)》, 2018, 53(12): 53-61.
[15] 宋亮,冯金顺,程正兴. 多重Gabor框架的存在性与稳定性[J]. 山东大学学报(理学版), 2017, 52(8): 17-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!