您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (7): 35-42.doi: 10.6040/j.issn.1671-9352.0.2021.609

• • 上一篇    

具有空间异质和合作捕食的捕食-食饵模型的正解

韩卓茹,李善兵*   

  1. 西安电子科技大学数学与统计学院, 陕西 西安 710126
  • 发布日期:2022-06-29
  • 作者简介:韩卓茹(1998— ),女,硕士研究生,研究方向为反应扩散方程及其应用. E-mail:hzrnan@163.com*通信作者简介:李善兵(1988— ),男,博士后,副教授,研究方向为反应扩散方程及其应用. E-mail:lishanbing@xidian.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11901446);中国博士后特别资助项目(2021T140530);西安市科协青年人才托举计划项目(095920201325)

Positive solutions of predator-prey model with spatial heterogeneity and hunting cooperation

HAN Zhuo-ru, LI Shan-bing*   

  1. College of Mathematics and Statistics, Xidian University, Xian 710126, Shaanxi, China
  • Published:2022-06-29

摘要: 研究了一类具有空间异质和合作捕食的捕食-食饵模型的平衡态问题。首先利用Riesz-Schauder理论,得到了平凡解和半平凡解的局部渐近稳定性;其次利用比较原理,证明了平凡解和半平凡解的全局渐近稳定性;最后利用不动点指数理论,建立了正解存在的充分条件。

关键词: 捕食-食饵模型, 空间异质, 合作捕食, 稳定性, 正解

Abstract: The steady-state problem of a predator-prey model with spatial heterogeneity and hunting cooperation is investigated. Firstly, by using the Riesz-Schauder theory, the local asymptotic stability of trivial solution and semi-trivial solutions is obtained. By means of the comparison principle, the global asymptotic stability of trivial solution and semi-trivial solutions is derived. Finally, the sufficient conditions for the existence of positive solutions are established by the fixed point index theory.

Key words: predator-prey model, spatial heterogeneity, hunting cooperations, positive solutions, stability

中图分类号: 

  • O175.26
[1] DUGATKIN L A. Cooperation among animals: an evolutionary perspective[M]. New York: Oxford University Press, 1997.
[2] PACKER C, SCHEEL D, PUSEY A E. Why lions form groups: food is not enough[J]. The American Naturalist, 1990, 136(1):1-19.
[3] SCHEEL D, PACKER C. Group hunting behaviour of lions: a search for cooperation[J]. Animal Behaviour, 1991, 41(4):697-709.
[4] SCHMIDT P A, MECH L D. Wolf pack size and food acquisition[J]. The American Naturalist, 1997, 150(4):513-517.
[5] BOESCH C. Cooperative hunting in wild chimpanzees[J]. Animal Behaviour, 1994, 48(3):653-667.
[6] COSNER C, DEANGELIS D L, AULT J S, et al. Effects of spatial grouping on the functional response of predators[J]. Theoretical Population Biology, 1999, 56(1):65-75.
[7] RYU K, KO W, HAQUE M. Bifurcation analysis in a predator-prey system with a functional response increasing in both predator and prey densities[J]. Nonlinear Dynamics, 2018, 94(3):1639-1656.
[8] ALVES M T, HILKER F M. Hunting cooperation and allee effects in predators[J]. Journal of Theoretical Biology, 2017, 419:13-22.
[9] RYU K, KO W. Asymptotic behavior of positive solutions to a predator-prey elliptic system with strong hunting cooperation in predators[J]. Physica A, 2019, 531:121726.
[10] WU Daiyong, ZHAO Min. Qualitative analysis for a diffusive predator-prey model with hunting cooperative[J]. Physica A, 2019, 515:299-309.
[11] FU Shengmao, ZHANG Huisen. Effect of hunting cooperation on the dynamic behavior for a diffusive Holling type II predator-prey model[J]. Communications in Nonlinear Science and Numerical Simulation, 2021, 99:105807.
[12] ALLEN L J S, BOLKER B M, LOU Y, et al. Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model[J]. Discrete and Continuous Dynamical Systems, 2008, 21(1):1-20.
[13] 叶其孝,李正元,王明新,等. 反应扩散方程引论[M]. 北京: 科学出版社, 2011. YE Qixiao, LI Zhengyuan, WANG Mingxin, et al. Introduction to reaction-diffusion equations[M]. Beijing: Science Press, 2011.
[14] RUAN Weihua, FENG Wei. On the fixed point index and multiple steady-state solutions of reaction-diffusion systems[J]. Differential and Integral Equations, 1995, 8(2):371-391.
[15] LI Shanbing, XIAO Yanni, DONG Yaying. Diffusive predator-prey models with fear effect in spatially heterogeneous environment[J]. Electronic Journal of Differential Equations, 2021, 2021(70):1-31.
[16] LI Lige. Coexistence theorems of steady states for predator-prey interacting systems[J]. Transactions of the American Mathematical Society, 1988, 305(1):143-166.
[1] 孟旭东. 集合优化问题解集的稳定性和扩展适定性[J]. 《山东大学学报(理学版)》, 2022, 57(2): 98-110.
[2] 沈维,张存华. 时滞食饵-捕食系统的多次稳定性切换和Hopf分支[J]. 《山东大学学报(理学版)》, 2022, 57(1): 42-49.
[3] 张钰倩,张太雷. 具有复发效应的SEAIR模型及在新冠肺炎传染病中的应用[J]. 《山东大学学报(理学版)》, 2022, 57(1): 56-68.
[4] 杨丽娟. 一类带参数四阶边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(9): 35-41.
[5] 朱彦兰,周伟,褚童,李文娜. 管理委托下的双寡头博弈的复杂动力学分析[J]. 《山东大学学报(理学版)》, 2021, 56(7): 32-45.
[6] 周艳,张存华. 具有集群行为的捕食者-食饵反应扩散系统的稳定性和Turing不稳定性[J]. 《山东大学学报(理学版)》, 2021, 56(7): 73-81.
[7] 郭慧瑛,杨富霞,张翠萍. 有有限Ext-强Ding投射维数的模的稳定性[J]. 《山东大学学报(理学版)》, 2021, 56(4): 31-38.
[8] 刘梦雪, 李杰梅, 姚燕燕. 带有非线性边界条件的四阶边值问题的多解性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 84-91.
[9] 苏肖肖, 张亚莉. 带阻尼项的二阶差分方程周期边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 56-63.
[10] 唐洁,魏玲,任睿思,赵思雨. 基于可能属性分析的粒描述[J]. 《山东大学学报(理学版)》, 2021, 56(1): 75-82.
[11] 张亚莉. 一类含一阶导数的四阶边值问题正解的全局结构[J]. 《山东大学学报(理学版)》, 2020, 55(8): 102-110.
[12] 阳忠亮, 郭改慧. 一类带有B-D功能反应的捕食-食饵模型的分支分析[J]. 《山东大学学报(理学版)》, 2020, 55(7): 9-15.
[13] 王晶晶,路艳琼. 一类半正非线性弹性梁方程边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 84-92.
[14] 王晶晶,路艳琼. 二阶微分方程Neumann边值问题最优正解的存在性[J]. 《山东大学学报(理学版)》, 2020, 55(3): 113-120.
[15] 温晓,刘琪,高振,曾维新,吕咸青. 局部非侵入式约化基模型在瑞利-泰勒不稳定中的应用[J]. 《山东大学学报(理学版)》, 2020, 55(2): 109-117.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!