您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (3): 113-120.doi: 10.6040/j.issn.1671-9352.0.2019.208

• • 上一篇    

二阶微分方程Neumann边值问题最优正解的存在性

王晶晶,路艳琼*   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 发布日期:2020-03-27
  • 作者简介:王晶晶(1995— ), 男, 硕士研究生, 研究方向为差分方程及其应用. E-mail:WJJ950712@163.com*通信作者简介:路艳琼(1986— ),女,博士,副教授,研究方向为差分方程及其应用.E-mail: luyq8610@126.com
  • 基金资助:
    国家自然科学基金青年科学基金资助项目(11801453,11901464);甘肃省青年科技基金计划资助项目(1606RJYA232);西北师范大学青年教师科研能力提升计划项目(NWNU-LKQN-15-16)

Existence of optimal positive solutions for Neumann boundary value problems of second order differential equations

WANG Jing-jing, LU Yan-qiong*   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2020-03-27

摘要: 运用锥上的不动点指数理论获得了格林函数非负时二阶连续Neumann边值问题 {u″(t)+a(t)u(t)=g(t)f(u(t)), t∈[0,T],u'(0)=u'(T)=0正解存在的最优条件,其中f∈C(R+,R+), a(·)∈C([0,T],(0,+SymboleB@))使得相应的齐次线性问题只有平凡解; g∈C((0,T),R+)且在 t=0和t=T处g(t)允许有奇性,R+:=[0,SymboleB@)。

关键词: Neumann边值问题, 正解, 非负格林函数, 不动点指数

Abstract: By using the fixed point exponential theory of cone mapping, we show the optimal conditions for the existence of positive solutions for second-order continuous Neumann boundary value problems {u″(t)+a(t)u(t)=g(t)f(u(t)), t∈[0,T],u'(0)=u'(T)=0with nonnegative Greens function, where fC(R+,R+), a(·)∈C([0,T],(0,+SymboleB@))satisfying the corresponding homogeneous linear problems have only trivial solutions, gC((0,T),R+), and g(t) is allowed to be singular at t=0 and t=T, R+:=[0,SymboleB@).

Key words: Neumann boundary value problem, positive solution, nonnegative Greens function, fixed point exponent

中图分类号: 

  • O175.8
[1] JIANG D Q, LIU H Z. Existence of positive solutions to second order Neumann boundary value problems[J]. Journal of Mathematical Research and Application, 2000, 20(3):360-364.
[2] 汤宇, 倪伟平. 二阶Neumann边值问题解的存在性[J].长春大学学报(自然科学版),2006,16(6):8-11. TANG Yu, NI Weiping. Existence of solutions to second order Neumann boundary value problems[J]. Journal of Changchun University(Natural Science), 2006, 16(6):8-11.
[3] SUN Yan, CHO Yeolje, OREGAN D. Positive solutions for singular second order Neumann boundary value problems via a cone fixed point theorem[J]. Applied Mathematics and Computation, 2009, 210(1):80-86.
[4] 闫东明. 变系数二阶Neumann边值问题正解的存在性[J].高校应用数学学报(A 辑), 2013,28(4):477-487. YAN Dongming. Existence of positive solutions to second order Neumann boundary value problems[J]. Journal of Applied Mathematics in Universities(Series A), 2013, 28(4):477-487.
[5] CABADA Aberto, ENGUICA Ricardo, LÓPEZ-SOMOZA Lucía. Positive solutions for second-order boundary value problems with sign changing Greens functions[J]. Electronic Journal of Differential Equations, 2017, 245:1-17.
[6] ZHANG G W, SUN J X. Positive solutions of m-point boundary value problems[J]. Journal of Mathematical Analysis and Applications, 2004, 291(2):406-418.
[7] CUI Y J, ZOU Y M. Nontrivial solutions of singular superlinear m-point boundary value problems[J]. Applied Mathematics and Computation, 2007, 182(2):1256-1264.
[8] WANG F L, ZHANG F. Positive solutions for a periodic boundary value problem without assumptions of monotonicity and convexity[J]. Bulletin of Mathematical Analysis and Applications, 2011, 3(2):261-268.
[9] GUO D J, LAKSHMIKANTHAM V. Nonlinear problems in abstract cones[M]. New York: Academic Press, 1988.
[1] 李海侠. 一类具有密度制约的捕食-食饵扩散模型的定性分析[J]. 《山东大学学报(理学版)》, 2019, 54(9): 54-61.
[2] 桑彦彬,陈娟,任艳. 带有Hardy项的奇异p-重调和方程正解的唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(6): 75-80.
[3] 马满堂. 一类非线性二阶系统周期边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(6): 88-95.
[4] 章欢,李永祥. 含时滞导数项的高阶常微分方程的正周期解[J]. 《山东大学学报(理学版)》, 2019, 54(4): 29-36.
[5] 何燕琴,韩晓玲. 带积分边界条件的四阶边值问题的单调正解[J]. 《山东大学学报(理学版)》, 2019, 54(12): 32-37.
[6] 苏肖肖. 一类奇异二阶阻尼差分方程周期边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(12): 38-45.
[7] 魏晋滢,王素云,李永军. 一类半正二阶常微分方程边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 7-12.
[8] 罗强,韩晓玲,杨忠贵. 三阶时滞微分方程边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 33-39.
[9] 宋君秋,贾梅,刘锡平,李琳. p-Laplace算子分数阶非齐次边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 57-66.
[10] 竺晓霖,翟成波. 一类二阶微分方程Sturm-Liouville边值问题正解的局部存在性与唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 91-96.
[11] 王娇. 一类非线性二阶常微分方程 Dirichlet问题正解的存在性[J]. 山东大学学报(理学版), 2018, 53(6): 64-69.
[12] 闫东亮. 带有导数项的二阶周期问题正解[J]. 山东大学学报(理学版), 2017, 52(9): 69-75.
[13] 李涛涛. 二阶半正椭圆微分方程径向正解的存在性[J]. 山东大学学报(理学版), 2017, 52(4): 48-55.
[14] 冯海星,翟成波. 高阶非线性分数阶微分方程系统的多个正解[J]. 山东大学学报(理学版), 2017, 52(12): 48-57.
[15] 郭丽君. 非线性微分方程三阶三点边值问题正解的存在性[J]. 山东大学学报(理学版), 2016, 51(12): 47-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!