《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (10): 57-66.doi: 10.6040/j.issn.1671-9352.0.2018.302
• • 上一篇
宋君秋,贾梅*,刘锡平,李琳
SONG Jun-qiu, JIA Mei*, LIU Xi-ping, LI Lin
摘要: 研究一类带有扰动参数以及p-Laplace算子的分数阶微分方程积分边值问题正解的存在性。根据积分核的性质,利用范数形式的锥拉伸与锥压缩不动点定理,以及超线性与次线性条件,得到边值问题正解的存在性与不存在性的充分条件,所得结论体现了参数对正解存在性的影响。最后,给出了例子以说明所得结果的合理性。
中图分类号:
[1] 白占兵. 分数阶微分方程边值问题理论及应用[M]. 北京: 中国科学技术出版社, 2013. BAI Zhanbing. Theory and application of boundary value problems for fractional differential equations[M]. Beijing: China Science and Technology Press, 2013. [2] KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and applications of fractional differential equations[M]. North-Holland: Elsevier, 2006. [3] ZHONG Qiuyan, ZHANG Xingqiu. Positive solution for higher-order singular infinite-point fractional differential equation with p-Laplacian[J]. Advances in Difference Equations, 2016, 2016(1):11-21. [4] LI Yunhong, YANG Heju. Existence of positive solutions for nonlinear four-point Caputo fractional differential equation with p-Laplacian[J]. Boundary Value Problems, 2017, 2017(1):75-89. [5] DHIFLI A, KHAMESSI B. Existence and boundary behavior of positive solution for a Sturm-Liouville fractional problem with p-Laplacian[J]. Journal of Fixed Point Theory & Applications, 2017(2):1-22. [6] 杨浩, 刘锡平, 吴贵云. 一类分数阶p-Laplace算子微分方程非局部边值问题解的存在性[J]. 山东大学学报(理学版), 2015, 50(4):56-62. YANG Hao, LIU Xiping, WU Guiyun. Existence of the solutions for a type of nonlocal boundary value problems for fractional differential equations with p-Laplacian operator[J]. Journal of Shandong University(Natural Science), 2015, 50(4):56-62. [7] LIU Zhenhai, LU Liang. A class of BVPs for nonlinear fractional differential equations with p-Laplacian operator[J]. Electronic Journal of Qualitative Theory of Differential Equations, 2012, 2012(70):1-16. [8] TANG Xiaosong, YAN Changyuan, LIU Qing. Existence of solutions of two-point boundary value problems for fractional p-Laplace differential equations at resonance[J]. Journal of Applied Mathematics & Computing, 2013, 41(1/2):119-131. [9] YANG Liu, XIE Dapeng, BAI Chuanzhi, et al. Multiple positive solutions for a coupled system of fractional multi-point BVP with p-Laplacian operator[J]. Advances in Difference Equations, 2017, 2017(1):168-183. [10] LIU Xiping, JIA Mei. The positive solutions for integral boundary value problem of fractional p-Laplacian equation with mixed derivatives[J]. Mediterranean Journal of Mathematics, 2017, 14(2):94-110. [11] 杨帅, 张淑琴, 王利平. 带积分边值条件的分数阶微分方程解的存在性[J]. 吉林大学学报(理学版), 2018(2):197-202. YANG Shuai, ZHANG Shuqin, WANG Liping. Existence of solutions of the fractional differential equation with integral boundary value conditions[J]. Journal of Jilin University(Science Edition), 2018(2):197-202. [12] 苏小凤, 贾梅, 李萌萌. 共振条件下分数阶微分方程积分边值问题解的存在性[J]. 山东大学学报(理学版), 2016, 51(8):66-73. SU Xiaofeng, JIA Mei, LI Mengmeng. Existence of solution for fractional differential equation integral boundary value problem at resonance[J]. Journal of Shandong University(Natural Science), 2016, 51(8):66-73. [13] WANG Xiao, LIU Xiping, DENG Xuejing. Existence and nonexistence of positive solutions for fractional integral boundary value problem with two disturbance parameters[J]. Boundary Value Problems, 2015, 2015(1):186-198. [14] 刘帅, 贾梅, 秦小娜. 带积分边值条件的分数阶微分方程解的存在性和唯一性[J]. 上海理工大学学报, 2014(5):409-415. LIU Shuai, JIA Mei, QIN Xiaona. Existence and uniqueness of solutions of the fractional differential equation with integral boundary conditions[J]. Journal of University of Shanghai for Science and Technology, 2014(5):409-415. [15] FENG Meiqiang, ZHANG Xuemei, GE Weigao. New existence results for higher-order nonlinear fractional differential equation with integral boundary conditions[J]. Boundary Value Problems, 2011, 2011(1):1-20. [16] 郭大钧, 孙经先, 刘兆理. 非线性常微分方程泛函方法[M]. 2版, 济南: 山东科学技术出版社, 2006. GUO Dajun, SUN Jingxian, LIU Zhaoli. Functional method for nonlinear ordinary differential equations[M]. 2nd ed. Jinan: Shandong Science and Technology Press, 2006. |
[1] | 桑彦彬,陈娟,任艳. 带有Hardy项的奇异p-重调和方程正解的唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(6): 75-80. |
[2] | 马满堂. 一类非线性二阶系统周期边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(6): 88-95. |
[3] | 亓婷婷, 张振福, 刘衍胜. 一类具有耦合积分边值条件的分数阶微分系统正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(2): 71-78. |
[4] | 魏晋滢,王素云,李永军. 一类半正二阶常微分方程边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 7-12. |
[5] | 罗强,韩晓玲,杨忠贵. 三阶时滞微分方程边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 33-39. |
[6] | 申柳肖,赵春. 基于尺度结构的竞争种群系统的最优输入率控制[J]. 山东大学学报(理学版), 2018, 53(7): 21-29. |
[7] | 曹雪靓,雒志学. 污染环境下森林发展系统的最优控制[J]. 山东大学学报(理学版), 2018, 53(7): 15-20. |
[8] | 王娇. 一类非线性二阶常微分方程 Dirichlet问题正解的存在性[J]. 山东大学学报(理学版), 2018, 53(6): 64-69. |
[9] | 闫东亮. 带有导数项的二阶周期问题正解[J]. 山东大学学报(理学版), 2017, 52(9): 69-75. |
[10] | 李涛涛. 二阶半正椭圆微分方程径向正解的存在性[J]. 山东大学学报(理学版), 2017, 52(4): 48-55. |
[11] | 张莎,贾梅,李燕,李晓晨. 分数阶脉冲微分方程三点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2017, 52(2): 66-72. |
[12] | 张迪,刘文斌. 带p(t)-Laplacian算子的分数阶微分方程共振无穷多点边值问题解的存在性[J]. 山东大学学报(理学版), 2017, 52(12): 72-80. |
[13] | 冯海星,翟成波. 高阶非线性分数阶微分方程系统的多个正解[J]. 山东大学学报(理学版), 2017, 52(12): 48-57. |
[14] | 荣文萍,崔静. 非Lipschitz条件下一类随机发展方程的μ-概几乎自守解[J]. 山东大学学报(理学版), 2017, 52(10): 64-71. |
[15] | 苏小凤,贾梅,李萌萌. 共振条件下分数阶微分方程积分边值问题解的存在性[J]. 山东大学学报(理学版), 2016, 51(8): 66-73. |
|