您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (10): 57-66.doi: 10.6040/j.issn.1671-9352.0.2018.302

• • 上一篇    

p-Laplace算子分数阶非齐次边值问题正解的存在性

宋君秋,贾梅*,刘锡平,李琳   

  1. 上海理工大学理学院, 上海 200093
  • 发布日期:2019-10-12
  • 作者简介:宋君秋(1993— ), 女, 硕士研究生, 研究方向为常微分方程理论与应用. E-mail:498711238@qq.com*通信作者简介:贾梅(1963— ), 女, 硕士, 副教授, 研究方向为常微分方程理论与应用. E-mail:jiamei-usst@163.com
  • 基金资助:
    国家自然科学基金资助项目(11171220)

Existence of positive solutions for fractional nonhomogeneous boundary value problem with p-Laplacian

SONG Jun-qiu, JIA Mei*, LIU Xi-ping, LI Lin   

  1. College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
  • Published:2019-10-12

摘要: 研究一类带有扰动参数以及p-Laplace算子的分数阶微分方程积分边值问题正解的存在性。根据积分核的性质,利用范数形式的锥拉伸与锥压缩不动点定理,以及超线性与次线性条件,得到边值问题正解的存在性与不存在性的充分条件,所得结论体现了参数对正解存在性的影响。最后,给出了例子以说明所得结果的合理性。

关键词: 分数阶微分方程, p-Laplace算子, 扰动参数, 不动点定理, 正解

Abstract: We study the existence of positive solutions for integral boundary value problem of fractional p-Laplacian equation with disturbance parameters. According to the properties of integral kernel and using the cone expansion and cone compression fixed point theorem and the super-linear and sub-linear conditions, the sufficient conditions of existence and nonexistence of positive solutions for the boundary value problem are obtained. The conclusions show the impact of parameters on the existence of positive solutions. Finally, we give some examples to illustrate our main results.

Key words: fractional differential equation, p-Laplacian operator, disturbance parameter, fixed point theorem, positive solution

中图分类号: 

  • O175.8
[1] 白占兵. 分数阶微分方程边值问题理论及应用[M]. 北京: 中国科学技术出版社, 2013. BAI Zhanbing. Theory and application of boundary value problems for fractional differential equations[M]. Beijing: China Science and Technology Press, 2013.
[2] KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and applications of fractional differential equations[M]. North-Holland: Elsevier, 2006.
[3] ZHONG Qiuyan, ZHANG Xingqiu. Positive solution for higher-order singular infinite-point fractional differential equation with p-Laplacian[J]. Advances in Difference Equations, 2016, 2016(1):11-21.
[4] LI Yunhong, YANG Heju. Existence of positive solutions for nonlinear four-point Caputo fractional differential equation with p-Laplacian[J]. Boundary Value Problems, 2017, 2017(1):75-89.
[5] DHIFLI A, KHAMESSI B. Existence and boundary behavior of positive solution for a Sturm-Liouville fractional problem with p-Laplacian[J]. Journal of Fixed Point Theory & Applications, 2017(2):1-22.
[6] 杨浩, 刘锡平, 吴贵云. 一类分数阶p-Laplace算子微分方程非局部边值问题解的存在性[J]. 山东大学学报(理学版), 2015, 50(4):56-62. YANG Hao, LIU Xiping, WU Guiyun. Existence of the solutions for a type of nonlocal boundary value problems for fractional differential equations with p-Laplacian operator[J]. Journal of Shandong University(Natural Science), 2015, 50(4):56-62.
[7] LIU Zhenhai, LU Liang. A class of BVPs for nonlinear fractional differential equations with p-Laplacian operator[J]. Electronic Journal of Qualitative Theory of Differential Equations, 2012, 2012(70):1-16.
[8] TANG Xiaosong, YAN Changyuan, LIU Qing. Existence of solutions of two-point boundary value problems for fractional p-Laplace differential equations at resonance[J]. Journal of Applied Mathematics & Computing, 2013, 41(1/2):119-131.
[9] YANG Liu, XIE Dapeng, BAI Chuanzhi, et al. Multiple positive solutions for a coupled system of fractional multi-point BVP with p-Laplacian operator[J]. Advances in Difference Equations, 2017, 2017(1):168-183.
[10] LIU Xiping, JIA Mei. The positive solutions for integral boundary value problem of fractional p-Laplacian equation with mixed derivatives[J]. Mediterranean Journal of Mathematics, 2017, 14(2):94-110.
[11] 杨帅, 张淑琴, 王利平. 带积分边值条件的分数阶微分方程解的存在性[J]. 吉林大学学报(理学版), 2018(2):197-202. YANG Shuai, ZHANG Shuqin, WANG Liping. Existence of solutions of the fractional differential equation with integral boundary value conditions[J]. Journal of Jilin University(Science Edition), 2018(2):197-202.
[12] 苏小凤, 贾梅, 李萌萌. 共振条件下分数阶微分方程积分边值问题解的存在性[J]. 山东大学学报(理学版), 2016, 51(8):66-73. SU Xiaofeng, JIA Mei, LI Mengmeng. Existence of solution for fractional differential equation integral boundary value problem at resonance[J]. Journal of Shandong University(Natural Science), 2016, 51(8):66-73.
[13] WANG Xiao, LIU Xiping, DENG Xuejing. Existence and nonexistence of positive solutions for fractional integral boundary value problem with two disturbance parameters[J]. Boundary Value Problems, 2015, 2015(1):186-198.
[14] 刘帅, 贾梅, 秦小娜. 带积分边值条件的分数阶微分方程解的存在性和唯一性[J]. 上海理工大学学报, 2014(5):409-415. LIU Shuai, JIA Mei, QIN Xiaona. Existence and uniqueness of solutions of the fractional differential equation with integral boundary conditions[J]. Journal of University of Shanghai for Science and Technology, 2014(5):409-415.
[15] FENG Meiqiang, ZHANG Xuemei, GE Weigao. New existence results for higher-order nonlinear fractional differential equation with integral boundary conditions[J]. Boundary Value Problems, 2011, 2011(1):1-20.
[16] 郭大钧, 孙经先, 刘兆理. 非线性常微分方程泛函方法[M]. 2版, 济南: 山东科学技术出版社, 2006. GUO Dajun, SUN Jingxian, LIU Zhaoli. Functional method for nonlinear ordinary differential equations[M]. 2nd ed. Jinan: Shandong Science and Technology Press, 2006.
[1] 桑彦彬,陈娟,任艳. 带有Hardy项的奇异p-重调和方程正解的唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(6): 75-80.
[2] 马满堂. 一类非线性二阶系统周期边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(6): 88-95.
[3] 亓婷婷, 张振福, 刘衍胜. 一类具有耦合积分边值条件的分数阶微分系统正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(2): 71-78.
[4] 魏晋滢,王素云,李永军. 一类半正二阶常微分方程边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 7-12.
[5] 罗强,韩晓玲,杨忠贵. 三阶时滞微分方程边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 33-39.
[6] 申柳肖,赵春. 基于尺度结构的竞争种群系统的最优输入率控制[J]. 山东大学学报(理学版), 2018, 53(7): 21-29.
[7] 曹雪靓,雒志学. 污染环境下森林发展系统的最优控制[J]. 山东大学学报(理学版), 2018, 53(7): 15-20.
[8] 王娇. 一类非线性二阶常微分方程 Dirichlet问题正解的存在性[J]. 山东大学学报(理学版), 2018, 53(6): 64-69.
[9] 闫东亮. 带有导数项的二阶周期问题正解[J]. 山东大学学报(理学版), 2017, 52(9): 69-75.
[10] 李涛涛. 二阶半正椭圆微分方程径向正解的存在性[J]. 山东大学学报(理学版), 2017, 52(4): 48-55.
[11] 张莎,贾梅,李燕,李晓晨. 分数阶脉冲微分方程三点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2017, 52(2): 66-72.
[12] 张迪,刘文斌. p(t)-Laplacian算子的分数阶微分方程共振无穷多点边值问题解的存在性[J]. 山东大学学报(理学版), 2017, 52(12): 72-80.
[13] 冯海星,翟成波. 高阶非线性分数阶微分方程系统的多个正解[J]. 山东大学学报(理学版), 2017, 52(12): 48-57.
[14] 荣文萍,崔静. 非Lipschitz条件下一类随机发展方程的μ-概几乎自守解[J]. 山东大学学报(理学版), 2017, 52(10): 64-71.
[15] 苏小凤,贾梅,李萌萌. 共振条件下分数阶微分方程积分边值问题解的存在性[J]. 山东大学学报(理学版), 2016, 51(8): 66-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!