《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (2): 71-78.doi: 10.6040/j.issn.1671-9352.0.2017.464
• • 上一篇
亓婷婷1, 张振福2, 刘衍胜1
QI Ting-ting1, ZHANG Zhen-fu2, LIU Yan-sheng1
摘要: 通过选择恰当的Banach空间及其范数,定义合适的算子,利用锥上的不动点定理和分数阶微积分理论,研究一类具有耦合积分边值条件的分数阶微分系统正解的存在性,并给出一个例子说明所得结论的应用。
中图分类号:
[1] HILFER R. Applications of fractional calculus in physics[J]. World Scientific, 2000, 2000(21):1021-1032. [2] KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and applications of fractional differential equations[M]. North-Holland: Elsevier, 2006. [3] PODLUBNY I. Fractional differential equations[C] //Mathematics in Science and Engineering. San Diego: Spring, 1999. [4] SABATIER J, AGRAWAL O P, MACHADO J A T. Advances in fractional calculus: theoretical developments and applications in physics and engineering[J]. Biochemical Journal, 2007, 361(Pt 1):97-103. [5] JIANG Jiqiang, LIU Lishan, WU Yonghong. Positive solutions to singular fractional differential system with coupled boundary conditions[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(11):3061-3074. [6] SHI Ailing, ZHANG Shuqin. Upper and lower solutions method and a fractional differential equation boundary value problem[J]. Electronic Journal of Qualitative Theory of Differential Equations, 2009, 2009(30):202-203. [7] SU Xinwei. Existence of solutions to boundary value problems for a coupled system of nonlinear fractional differential equations[J]. Applied Mathematics Letters, 2009, 22(1):64-69. [8] ZHANG Xinguang, HAN Yuefeng. Existence and uniqueness of positive solutions for higher order nonlocal fractional differential equations[J]. Applied Mathematics Letters, 2012, 25(3):555-560. [9] ZHAO Daliang, LIU Yansheng. Multiple positive solutions for nonlinear fractional boundary value problems[J]. Scientific World Journal, 2013, 2013(13):1-9. [10] HENDERSON J, LUCA R. Existence and multiplicity of positive solutions for a system of fractional boundary value problems[J]. Boundary Value Problems, 2014, 2014(1):1-17. [11] HENDERSON J, LUCA R. Positive solutions for a system of fractional differential equations with coupled integral boundary conditions[J]. Applied Mathematics and Computation, 2014, 249(249):182-197. [12] ZHAO Kaihong, GONG Ping. Positive solutions of Riemann-Stieltjes integral boundary problems for the nonlinear coupling system involving fractional-order differential[J]. Advances in Difference Equations, 2014, 2014(1):1-18. [13] CABADA A, HAMDI Z. Nonlinear fractional differential equations with integral boundary value conditions[J]. Applied Mathematics and Computation, 2014, 228(2012):251-257. [14] CUI Yujun. Existence of solutions for coupled integral boundary value problem at resonance[J]. Publicationes Mathematicae, 2016, 89(1/2):73-88. [15] ZHAO Daliang, LIU Yansheng. Positive solutions for a class of fractional differential coupled system with integral boundary value conditions[J]. Journal of Nonlinear Science and Applications, 2016, 9(5):2922-2942. [16] GUO Dajun, LAKSHMIKANTHAM V. Nonlinear problems in abstract cones[M]. Salt Lake City: Academic Press, 1988. |
[1] | 巩增泰,高寒. n维模糊数值函数的预不变凸性[J]. 山东大学学报(理学版), 2018, 53(10): 72-81. |
[2] | 王素云,李永军. 带超越共振点非线性项的二阶常微分方程边值问题的可解性[J]. 山东大学学报(理学版), 2018, 53(6): 53-56. |
[3] | 王娇. 一类非线性二阶常微分方程 Dirichlet问题正解的存在性[J]. 山东大学学报(理学版), 2018, 53(6): 64-69. |
[4] | 张申贵. 四阶变指数椭圆方程Navier边值问题的多解性[J]. 山东大学学报(理学版), 2018, 53(2): 32-37. |
[5] | 叶芙梅. 带导数项共振问题的可解性[J]. 山东大学学报(理学版), 2018, 53(2): 25-31. |
[6] | 张迪,刘文斌. 带p(t)-Laplacian算子的分数阶微分方程共振无穷多点边值问题解的存在性[J]. 山东大学学报(理学版), 2017, 52(12): 72-80. |
[7] | 何志乾, 苗亮英. 带弱奇性的二阶阻尼微分方程正周期解的存在性[J]. 山东大学学报(理学版), 2017, 52(10): 84-88. |
[8] | 闫东亮. 带有导数项的二阶周期问题正解[J]. 山东大学学报(理学版), 2017, 52(9): 69-75. |
[9] | 巩增泰,寇旭阳. 集值函数关于模糊测度Choquet积分的表示和积分原函数性质[J]. 山东大学学报(理学版), 2017, 52(8): 1-9. |
[10] | 李涛涛. 二阶半正椭圆微分方程径向正解的存在性[J]. 山东大学学报(理学版), 2017, 52(4): 48-55. |
[11] | 崔玉军,赵聪. 四阶微分方程奇异边值问题解的唯一性[J]. 山东大学学报(理学版), 2017, 52(2): 73-76. |
[12] | 张莎,贾梅,李燕,李晓晨. 分数阶脉冲微分方程三点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2017, 52(2): 66-72. |
[13] | 李晓燕,徐嫚. 二阶脉冲微分方程Dirichlet问题非平凡解的存在性及多解性[J]. 山东大学学报(理学版), 2016, 51(12): 29-35. |
[14] | 郭丽君. 非线性微分方程三阶三点边值问题正解的存在性[J]. 山东大学学报(理学版), 2016, 51(12): 47-53. |
[15] | 朱雯雯. 带参数的一阶周期边值问题正解的存在性及多解性[J]. 山东大学学报(理学版), 2016, 51(12): 36-41. |
|