您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (10): 7-12.doi: 10.6040/j.issn.1671-9352.0.2018.263

• • 上一篇    

一类半正二阶常微分方程边值问题正解的存在性

魏晋滢,王素云,李永军   

  1. 兰州城市学院数学学院, 甘肃 兰州 730070
  • 发布日期:2019-10-12
  • 作者简介:魏晋滢(1978— ), 男, 博士, 副教授, 研究方向为非线性泛函分析及无穷维动力系统. E-mail:weijy2818@163.com
  • 基金资助:
    国家自然科学基金资助项目(11761044,11661048);兰州城市学院博士科研启动基金资助项目(LZCU-BS2015-01);兰州城市学院重点建设学科资助项目(LZCU-ZDJSXK-201706)

Existence of positive solutions to a semipositone second-order boundary value problem

WEI Jin-ying, WANG Su-yun, LI Yong-jun   

  1. School of Mathematics, Lanzhou City University, Lanzhou 730070, Gansu, China
  • Published:2019-10-12

摘要: 考虑非线性二阶常微分方程边值问题u″+c(t)u+λf(t,u)=0, 00, c(·)∈C[0,1]满足-∞π2对t∈[0,1]成立, f:[0,1]×R+→R连续且满足f≥-L, L>0是常数。通过利用相应线性边值问题的Green函数及其性质和Krasnoselskii不动点定理,获得了问题正解的存在性结果。

关键词: 半正问题, 边值问题, Green函数, 正解, 不动点定理

Abstract: We consider the existence of positive solutions to the boundary value problemu″(t)+c(t)u+λf(t,u)=0, 0λ>0, c(·)∈C[0,1 satisfies -∞π2 for t∈[0,1, f:[0,1]×R+→R is continuous function and satisfies f≥-L, L>0 is a constant. By investigating the sign property of the Green function of the associated linear boundary value problem, we show the existence of positive solutions of semipositone problems. The proof of the main result is based on Krasnoselskii fixed point theorems in cone.

Key words: semipositone problem, boundary value problem, Green function, positive solution, fixed point theorem

中图分类号: 

  • O175.8
[1] AGARWAL R P, OREGAN D. Singular boundary value problems for superlinear second order Ordinary and delay differential equations[J]. Journal of Differential Equations, 1996, 130(2):333-355.
[2] JIANG Daqing. Multiple positive solutions to singular boundary value problems for superlinear second order ODES[J]. Acta Mathematica Scientia, 2002, 22(2):199-206.
[3] LIU Zhaoli, LI Fuyi. Multiple positive solutions of nonlinear two-point boundary value problems[J]. Journal of Mathematical Analysis and Applications, 1996, 203(3): 610-625.
[4] 程伟, 徐家发. 一类2n阶边值问题正解的存在性[J]. 重庆师范大学学报(自然科学版), 2018,35(1):66-69. CHENG Wei, XU Jiafa. Existence of positive solutions for a class of 2n-order boundary value problems[J]. Journal of Chongqing Normal University(Natural Science), 2018, 35(1):66-69.
[5] WALTER W. Ordinary differential equations[M]. New York: Springer, 1998.
[6] CASTRO A, SHIVAJI R. Nonnegative solutions for a class of nonpositone problems[J]. Proceedings of the Royal Society of Edinburgh, 1988, 108: 291-302.
[7] ANURADHA V, HAI D, SHIVAJI R. Existence results for superlinear semipositone BVPs[J]. Proceedings of the American Mathematical Society, 1996, 124(3):757-763.
[8] MA Ruyun, MA Qiaozhen. Positive solutions for semipositone m-point boundary value problems[J]. Acta Mathematica Sinica, 2004, 20(2):273-282.
[9] LI Yongxiang. Positive solutions of fourth-order boundary value problems with two parameters[J]. Journal of Mathematical Analysis and Applications, 2003, 281(2):477-484.
[10] LI Yongxiang. On the existence and nonexistence of positive solutions for nonlinear Sturm-Liouville boundary value problems[J]. Journal of Mathematical Analysis and Applications, 2005, 304(1):74-86.
[11] KRASNOSEL'SKII M A. Positive solutions of operator equations[M]. Gronigen: Noordhoff, 1964.
[12] COPPEL W A. Disconjugacy[M]. New York: Springer, 1971.
[13] MA Ruyun, LU Yanqiong. Disconjugacy and extremal solutions of nonlinear third-order equations[J]. Communications on Pure and Applied Analysis, 2014, 13(3):1223-1236.
[1] 桑彦彬,陈娟,任艳. 带有Hardy项的奇异p-重调和方程正解的唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(6): 75-80.
[2] 马满堂. 一类非线性二阶系统周期边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(6): 88-95.
[3] 亓婷婷, 张振福, 刘衍胜. 一类具有耦合积分边值条件的分数阶微分系统正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(2): 71-78.
[4] 曹雪靓,雒志学. 污染环境下森林发展系统的最优控制[J]. 山东大学学报(理学版), 2018, 53(7): 15-20.
[5] 申柳肖,赵春. 基于尺度结构的竞争种群系统的最优输入率控制[J]. 山东大学学报(理学版), 2018, 53(7): 21-29.
[6] 王娇. 一类非线性二阶常微分方程 Dirichlet问题正解的存在性[J]. 山东大学学报(理学版), 2018, 53(6): 64-69.
[7] 王素云,李永军. 带超越共振点非线性项的二阶常微分方程边值问题的可解性[J]. 山东大学学报(理学版), 2018, 53(6): 53-56.
[8] 张申贵. 四阶变指数椭圆方程Navier边值问题的多解性[J]. 山东大学学报(理学版), 2018, 53(2): 32-37.
[9] 闫东亮. 带有导数项的二阶周期问题正解[J]. 山东大学学报(理学版), 2017, 52(9): 69-75.
[10] 李涛涛. 二阶半正椭圆微分方程径向正解的存在性[J]. 山东大学学报(理学版), 2017, 52(4): 48-55.
[11] 张莎,贾梅,李燕,李晓晨. 分数阶脉冲微分方程三点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2017, 52(2): 66-72.
[12] 崔玉军,赵聪. 四阶微分方程奇异边值问题解的唯一性[J]. 山东大学学报(理学版), 2017, 52(2): 73-76.
[13] 张迪,刘文斌. p(t)-Laplacian算子的分数阶微分方程共振无穷多点边值问题解的存在性[J]. 山东大学学报(理学版), 2017, 52(12): 72-80.
[14] 冯海星,翟成波. 高阶非线性分数阶微分方程系统的多个正解[J]. 山东大学学报(理学版), 2017, 52(12): 48-57.
[15] 荣文萍,崔静. 非Lipschitz条件下一类随机发展方程的μ-概几乎自守解[J]. 山东大学学报(理学版), 2017, 52(10): 64-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!