《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (6): 88-95.doi: 10.6040/j.issn.1671-9352.0.2018.344
• • 上一篇
马满堂
MA Man-tang
摘要: 考察了非线性二阶系统周期边值问题{u″+A(t)u=ΛG(t)F(u), 0
中图分类号:
[1] CABADA A, CID J Á, TVRDY M. A generalized anti-maximum principle for the periodic one-dimensional p-Laplacian with sign-changing potential[J]. Nonlinear Analysis, 2010, 72(7):3436-3446. [2] MA Ruyun, GAO Chenhua, CHEN Ruipeng. Existence of positive solutions of nonlinear second-order periodic boundary value problems[J]. Boundary Value Problems, 2010, 1:1-18. [3] TORRES P J. Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem[J]. Journal of Differential Equations, 2003, 190(2):643-662. [4] CABADA A, CID J Á. On the sign of the Greens function associated to Hills equation with an indefinite potential[J]. Applied Mathematics and Computation, 2008, 205(1):303-308. [5] GAO Chenhua, ZHANG Fei, MA Ruyun. Existence of positive solutions of second-order periodic boundary value problems with sign-changing Greens function[J]. Acta Mathematicae Applicatae Sinica(English Series), 2017, 33(2):263-268. [6] OREGAN D, WANG Haiyan. Positive periodic solutions of systems of second order ordinary differential equations[J]. Positivity, 2006, 10(2):285-298. [7] CHU Jifeng, CHEN Hao, OREGAN D. Positive periodic solutions and eigenvalue intervals for systerms of second order differential equations[J]. Mathematische Nachrichten, 2008, 281(11):1549-1556. [8] CHEN Ruipeng, LI Xiaoya. Positive periodic solutions of second-order singular coupled systems with damping terms[J]. Journal of Mathematical Research with Applications, 2017, 37(4):435-448. [9] LI Xiong, ZHANG Ziheng. On the existence of positive periodic solutions of systems of second order differential equations[J]. Mathematische Nachrichten, 2011, 284(11/12):1472-1482. [10] CHEN Ruipeng, MA Ruyun, HE Zhiqian. Positive periodic solutions of first-order singular systems[J]. Applied Mathematics and Computation, 2012, 218(23):11421-11428. [11] CAO Zhongwei, JIANG Daqing. Periodic solutions of second order singular coupled systems[J]. Nonlinear Analysis, 2009, 71(9):3661-3667. [12] LYU Ling-ling, ZHANG Zhe, ZHANG Lei. A parametric poles assignment algorithm for second-order linear periodic systems[J]. Journal of the Franklin Institute, 2017, 354(18):8057-8071. [13] 郭大钧. 非线性泛函分析[M]. 济南: 山东科学技术出版社, 1985. GUO Dajun. Nonlinear functional analysis[M]. Jinan: Shandong Science and Technology Press, 1985. |
[1] | 桑彦彬,陈娟,任艳. 带有Hardy项的奇异p-重调和方程正解的唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(6): 75-80. |
[2] | 屈娟,冯玉明,李艳平,李丽. 可证明的基于扩展混沌映射的匿名多服务器身份认证协议[J]. 《山东大学学报(理学版)》, 2019, 54(5): 44-51. |
[3] | 章欢,李永祥. 含时滞导数项的高阶常微分方程的正周期解[J]. 《山东大学学报(理学版)》, 2019, 54(4): 29-36. |
[4] | 冯娜娜,吴保卫. 切换奇异系统事件触发控制的输入输出有限时间稳定[J]. 《山东大学学报(理学版)》, 2019, 54(3): 75-84. |
[5] | 亓婷婷, 张振福, 刘衍胜. 一类具有耦合积分边值条件的分数阶微分系统正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(2): 71-78. |
[6] | 顾沈明,陆瑾璐,吴伟志,庄宇斌. 广义多尺度决策系统的局部最优粒度选择[J]. 山东大学学报(理学版), 2018, 53(8): 1-8. |
[7] | 王俊芳,赵培浩. 带有梯度超线性项抛物方程黏性解的比较原理[J]. 山东大学学报(理学版), 2018, 53(8): 77-83. |
[8] | 于倩倩,魏广生. Jacobi矩阵的逆谱问题及其应用[J]. 山东大学学报(理学版), 2018, 53(8): 66-76. |
[9] | 曹雪靓,雒志学. 污染环境下森林发展系统的最优控制[J]. 山东大学学报(理学版), 2018, 53(7): 15-20. |
[10] | 王娇. 一类非线性二阶常微分方程 Dirichlet问题正解的存在性[J]. 山东大学学报(理学版), 2018, 53(6): 64-69. |
[11] | 张道祥,孙光讯,马媛,陈金琼,周文. 带有Holling-III功能反应和线性收获效应的时滞扩散捕食者-食饵系统Hopf分支和空间斑图[J]. 山东大学学报(理学版), 2018, 53(4): 85-94. |
[12] | 叶芙梅. 带导数项共振问题的可解性[J]. 山东大学学报(理学版), 2018, 53(2): 25-31. |
[13] | 张友,黄丽娜,李沐春. 一类六角系统的点可区别边染色[J]. 《山东大学学报(理学版)》, 2018, 53(12): 41-47. |
[14] | 冯孝周,徐敏,王国珲. 具有B-D反应项与毒素影响的捕食系统的共存解[J]. 《山东大学学报(理学版)》, 2018, 53(12): 53-61. |
[15] | 张晓,杨燕燕. 覆盖决策系统的规则提取和置信度保持的属性约简算法[J]. 《山东大学学报(理学版)》, 2018, 53(12): 120-126. |
|