您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (10): 1-6.doi: 10.6040/j.issn.1671-9352.0.2018.131

• •    

一类基尔霍夫型微分系统的周期解

张申贵   

  1. 西北民族大学数学与计算机科学学院, 甘肃 兰州 730030
  • 发布日期:2019-10-12
  • 作者简介:张申贵(1980— ), 男, 博士, 副教授, 研究方向为非线性泛函分析. E-mail:zhangshengui315@163.com
  • 基金资助:
    国家自然科学基金资助项目(11401473);甘肃省科技计划资助项目(1610RJZA102);西北民族大学中央高校基本科研业务专项经费资助项目(31920180041)

Periodic solutions for a class of Kirchhoff-type differential systems

ZHANG Shen-gui   

  1. College of Mathematics and Computer Science, Northwest Minzu University, Lanzhou 730030, Gansu, China
  • Published:2019-10-12

摘要: 利用变分原理研究一类超线性基尔霍夫型p(t)-Laplace系统的周期解。在Ambrosetti-Rabinowitz型增长条件不满足时,根据变化的山路定理,得到了系统周期解的存在性结果。

关键词: 基尔霍夫型方程, p(t)-Laplace系统, 周期解, 临界点, 山路定理

Abstract: By using variational principle, the author studied periodic solutions for a class of superlinear Kirchhoff-type p(t)-Laplacian systems. Under the condition of no Ambrosetti-Rabinowitz-type growth, some results for the existence of periodic solutions are obtained by means of a variant mountain pass type theorem.

Key words: Kirchhoff-type equation, p(t)-Laplacian systems, periodic solutions, critical point, mountain pass thoerem

中图分类号: 

  • O175.12
[1] ZHIKOV V. On some variational problems[J]. Russian J Math Phys, 1997, 5(1):105-116.
[2] RUZICKA M. Electrorheologial fluids: modeling and mathematial theory[M]. Berlin: Springer-Verlag, 2000.
[3] CHEN Y, LEVINE S, RAO M. Variable exponent, linear growth functionals in image restoration[J]. SIAM J Appl Math, 2006, 66(4):1383-1406.
[4] FAN Xianling, FAN Xing. A Knobloch-type result for p(t)-Laplacian systems[J]. J Math Anal Appl, 2003, 282(2):453-464.
[5] WANG Xianjun, YUAN Ruan. Existence of periodic solutions for p(t)-Laplacian systems[J]. Nonlinear Analysis, 2009, 70(2):866-880.
[6] ZHANG Liang, TANG Xianhua, CHEN Jing. Infinitely many periodic solutions for some second-order differential systems with p(t)-Laplacian[J]. Boundary Value Problems, 2011, 33(1):1-15.
[7] CHEN Peng, TANG Xianhua, AGARWAL R. Infinitely many homoclinic solutions for nonautonomous p(t)-Laplacian Hamiltonian systems[J]. Computer and Mathematical with Applications, 2012, 63(4):751-763.
[8] PASCA D, TANG Chunlei. Periodic solutions of non-autonomous second order systems with(q(t), p(t))-Laplacian[J]. Mathematica Slovaca, 2014, 64(1):913-930.
[9] ZHANG Ziheng, YUAN Ruan. Existence of two almost homoclinic solutions for p(t)-Laplacian Hamiltonian systems with a small perturbation[J]. Journal of Applied Mathematics and Computing, 2016, 52(1):173-189.
[10] AN Yukun, RU Yuanfang, WANG Fanglei. Existence of nonconstant periodic solutions for a class of second-order systems with p(t)-Laplacian[J]. Boundary Value Problems, 2017, 170(1):1-15.
[11] AUTUORI G, PUCCI P, SALVATORI M C. Asymptotic stability for anisotropic Kirchhoff systems[J]. J Math Anal Appl, 2009, 352(1):149-165.
[12] BONANNO G. Relations between the mountain pass theorem and local minima[J]. Advance Nonlinear Analysis, 2012, 1(3):205-220.
[1] 陈瑞鹏,李小亚. 带阻尼项的二阶奇异微分方程的正周期解[J]. 《山东大学学报(理学版)》, 2019, 54(8): 33-41.
[2] 章欢,李永祥. 含时滞导数项的高阶常微分方程的正周期解[J]. 《山东大学学报(理学版)》, 2019, 54(4): 29-36.
[3] 张申贵. 变分方法对变指数脉冲微分系统的应用[J]. 《山东大学学报(理学版)》, 2019, 54(4): 22-28.
[4] 吴忆佳,成荣. 一类Schrödinger方程的无穷多非平凡解[J]. 《山东大学学报(理学版)》, 2019, 54(2): 84-88.
[5] 李乐乐,贾建文. 具有时滞影响的SIRC传染病模型的Hopf分支分析[J]. 《山东大学学报(理学版)》, 2019, 54(1): 116-126.
[6] 陈雨佳, 杨和. 一类三阶时滞微分方程在Banach空间中的周期解的存在性[J]. 山东大学学报(理学版), 2018, 53(8): 84-94.
[7] 张申贵. 四阶变指数椭圆方程Navier边值问题的多解性[J]. 山东大学学报(理学版), 2018, 53(2): 32-37.
[8] 何志乾, 苗亮英. 带弱奇性的二阶阻尼微分方程正周期解的存在性[J]. 山东大学学报(理学版), 2017, 52(10): 84-88.
[9] 王双明. 一类具有时滞的周期流行病模型的动力学分析[J]. 山东大学学报(理学版), 2017, 52(1): 81-87.
[10] 陈彬. 格林函数变号的三阶周期边值问题[J]. 山东大学学报(理学版), 2016, 51(8): 79-83.
[11] 江静,高庆龄,张克玉. 时标上二阶Dirichlet边值问题弱解的存在性[J]. 山东大学学报(理学版), 2016, 51(6): 99-103.
[12] 万树园,王智勇. 一类具有p-Laplace算子的Hamilton系统周期解的存在性[J]. 山东大学学报(理学版), 2016, 51(12): 42-46.
[13] 张申贵. p(x)-调和算子的Kirchhoff型方程的多重解[J]. 山东大学学报(理学版), 2016, 51(10): 48-53.
[14] 吴成明. 二阶奇异耦合系统正周期解的存在性[J]. 山东大学学报(理学版), 2015, 50(10): 81-88.
[15] 徐嫚. 带双参数的脉冲泛函微分方程正周期解的存在性[J]. 山东大学学报(理学版), 2015, 50(06): 69-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!