《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (1): 116-126.doi: 10.6040/j.issn.1671-9352.0.2018.366
• • 上一篇
李乐乐,贾建文*
LI Le-le, JIA Jian-wen*
摘要: 讨论了一个具有时滞影响的关于流感A的SIRC传染病模型。首先求得基本再生数R0,研究了模型平衡点的存在性及稳定性;其次证明了时滞可以导致系统Hopf分支的产生;然后,利用中心流形定理和规范型理论讨论了分支方向和周期解的稳定性;最后给出了数值模拟。
中图分类号:
[1] DAVID J D Earn, JONATHAN Dushoff, LEVIN S A. Ecology and evolution of the flu[J]. Trends in Ecology and Evolution, 2002, 17(7):334-340. [2] PALESE P, YOUNG J. Variation of influenza A, B, and C viruses[J]. Science, 1982, 215(4539):1468-1474. [3] Casagrandi Renato, Bolzoni Luca, LEVIN Simon A, et al. The SIRC model and influenza A[J]. Mathematical Biosciences, 2006, 200(2): 152-169. [4] ANDREASEN V, LIN J, LEVIN S A. The dynamics of cocirculating influenza strains conferring partial cross-immunity[J]. Journal of Mathematical Biology, 1997, 35(7):825-842. [5] CHUNG K W, LUI R. Dynamics of two-strain influenza model with cross-immunity and no quarantine class[J]. Journal of Mathematical Biology, 2016, 73(6/7):1-24. [6] LIN J, ANDREASEN V, LEVIN S A. Dynamics of influenza A drift: the linear three-strain model[J]. Mathematical Biosciences, 1999, 162(1/2):33-51. [7] NU(¨overN)O M, FENG Z, CASTILLO-CHAVEZ C. Dynamics of two-strain influenza with isolation and partial cross-immunity[J]. SIAM Journal on Applied Mathematics, 2006, 65(3):964-982. [8] LARSON H, TYRRELL D, BOWKER C, et al. Immunity to challenge in volunteers vaccinated with an inactivated current or earlier strain of influenza A(H3N2)[J]. J Hyg Cambridge, 1978, 80(2):243-248. [9] DAVIES J R, GRILLI E A, SMITH A J. Influenza A: infection and reinfection[J]. J Hyg Cambridg, 1984, 92(1):125-127. [10] LI Haijiao, GUO Shangjiang. Dynamic of a sirc epidemiological model[J]. Electronic Journal of Differential Equations, 2017, 2017(121):1-18. [11] JIANG Zhichao, MA Wanbiao, WEI Junjie. Global Hopf bifurcation and permanence of a delayed SEIRS epidemic model[J]. Mathematics and Computers in Simulation, 2016, 122(1):35-54. [12] MANNA K, CHAKRABARTY S P. Global stability of one and two discrete delay models for chronic hepatitis B infection with HBV DNA-containing capsids[J]. Computers Applapplied Mathematics, 2017, 36(1):1-12. [13] NEOFYTOU G, KYRYCHKO Y N, BLYUSS K B. Time-delayed model of RNA interference[J]. Ecological Complexity, 2017, 30(1):11-25. [14] WANG Xunyang, HATTAF Khalid, HUO Haifeng, et al. Stability analysic of a delayed social epidemics model with general contact rate and its optimal control[J]. Journal of Industrial and Management Optimization, 2017, 12(4):1267-1285. [15] ZHANG Yinying, JIA Jianwen. Hopf bifurcation of an epidemic model with a nonlinear birth in population and vertical transmission[J]. Applied Mathematics and Computation. 2014, 230(4):164-173. [16] SAMANTA G P. Global dynamics of a nonautonomous SIRC model for influenza A with distributed time delay[J]. Differential Equations and Dynamical Systems, 2010, 18(4):341-362. [17] DIEKMANN O, HEESTERBEEK J A P, METZ J A J. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations[J]. Journal of Mathematical Biology, 1990, 28(4):365-382. [18] HASSARD B D, HASSARD D B, KAZARINOFF N D, et al. Theory and applications of Hopf bifurcation[M]. Cambridge: Cambridge University Press, 1981. [19] HU Guangping, LI Xiaoling. Stability and Hopf bifurcation for a delayed predator-prey model with disease in the prey[J]. Chaos, Solitons and Fractals, 2012, 45(3):229-237. |
[1] | 陈雨佳, 杨和. 一类三阶时滞微分方程在Banach空间中的周期解的存在性[J]. 山东大学学报(理学版), 2018, 53(8): 84-94. |
[2] | 董兴林,齐欣. 基于时滞效应的青岛市两阶段科技投入与产出互动关系[J]. 山东大学学报(理学版), 2018, 53(5): 80-87. |
[3] | 陈丽,林玲. 具有时滞效应的股票期权定价[J]. 山东大学学报(理学版), 2018, 53(4): 36-41. |
[4] | 张道祥,孙光讯,马媛,陈金琼,周文. 带有Holling-III功能反应和线性收获效应的时滞扩散捕食者-食饵系统Hopf分支和空间斑图[J]. 山东大学学报(理学版), 2018, 53(4): 85-94. |
[5] | 高荣,张焕水. 离散时间多输入时滞随机系统的镇定性[J]. 山东大学学报(理学版), 2017, 52(4): 105-110. |
[6] | 鞠培军,王伟. 多输入多输出线性系统的时滞界问题[J]. 山东大学学报(理学版), 2017, 52(11): 60-64. |
[7] | 何志乾, 苗亮英. 带弱奇性的二阶阻尼微分方程正周期解的存在性[J]. 山东大学学报(理学版), 2017, 52(10): 84-88. |
[8] | 王亚军,张申,胡青松,刘峰,张玉婷. 具有测量噪声的时滞多智能体系统的一致性问题[J]. 山东大学学报(理学版), 2017, 52(1): 74-80. |
[9] | 王双明. 一类具有时滞的周期流行病模型的动力学分析[J]. 山东大学学报(理学版), 2017, 52(1): 81-87. |
[10] | 陈彬. 格林函数变号的三阶周期边值问题[J]. 山东大学学报(理学版), 2016, 51(8): 79-83. |
[11] | 谭成,张焕水. 具有输入时滞的离散时间随机系统Lyapunov镇定性条件[J]. 山东大学学报(理学版), 2016, 51(5): 114-120. |
[12] | 王长弘,王林山. 基于忆阻器的S-分布时滞随机神经网络的均方指数稳定性[J]. 山东大学学报(理学版), 2016, 51(5): 130-135. |
[13] | 万树园,王智勇. 一类具有p-Laplace算子的Hamilton系统周期解的存在性[J]. 山东大学学报(理学版), 2016, 51(12): 42-46. |
[14] | 李琳, 张焕水. 离散时间多输入时滞系统的镇定性问题[J]. 山东大学学报(理学版), 2015, 50(11): 91-97. |
[15] | 吴成明. 二阶奇异耦合系统正周期解的存在性[J]. 山东大学学报(理学版), 2015, 50(10): 81-88. |
|