您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (1): 116-126.doi: 10.6040/j.issn.1671-9352.0.2018.366

• • 上一篇    

具有时滞影响的SIRC传染病模型的Hopf分支分析

李乐乐,贾建文*   

  1. 山西师范大学数学与计算机科学学院, 山西 临汾 041004
  • 发布日期:2019-01-23
  • 作者简介:李乐乐(1993— ),女,硕士研究生,研究方向为生物数学. E-mail:646072177@qq.com*通信作者简介:贾建文(1963— ),男,教授,研究方向为生物数学. E-mail:jiajw.2008@163.com
  • 基金资助:
    山西师范大学研究生创新项目(01053003)

Hopf bifurcation of a SIRC epidemic model with delay

LI Le-le, JIA Jian-wen*   

  1. School of Mathematics and Computer Science, Shanxi Normal University, Linfen 041004, Shanxi, China
  • Published:2019-01-23

摘要: 讨论了一个具有时滞影响的关于流感A的SIRC传染病模型。首先求得基本再生数R0,研究了模型平衡点的存在性及稳定性;其次证明了时滞可以导致系统Hopf分支的产生;然后,利用中心流形定理和规范型理论讨论了分支方向和周期解的稳定性;最后给出了数值模拟。

关键词: SIRC传染病模型, 交叉感染, 时滞, Hopf分支, 周期解

Abstract: This article concerns a SIRC model for Influenza A with time delay. The basic reproduction number R0 is calculated. For the model without delay, we demonstrate the conditions for global stability of equilibria. And we show that the delay can only change the stability of the endemic equilibrium and lead to the existence of Hopf bifurcation. By applying the center manifold theorem, normal form theory, we also derive some explicit formulae determining the bifurcation direction and the stability of the bifurcated periodic solutions. Finally, numerical simulation is given to support our results.

Key words: SIRC model, cross-immune, delay, Hopf-bifurcation, periodic solution

中图分类号: 

  • O175.12
[1] DAVID J D Earn, JONATHAN Dushoff, LEVIN S A. Ecology and evolution of the flu[J]. Trends in Ecology and Evolution, 2002, 17(7):334-340.
[2] PALESE P, YOUNG J. Variation of influenza A, B, and C viruses[J]. Science, 1982, 215(4539):1468-1474.
[3] Casagrandi Renato, Bolzoni Luca, LEVIN Simon A, et al. The SIRC model and influenza A[J]. Mathematical Biosciences, 2006, 200(2): 152-169.
[4] ANDREASEN V, LIN J, LEVIN S A. The dynamics of cocirculating influenza strains conferring partial cross-immunity[J]. Journal of Mathematical Biology, 1997, 35(7):825-842.
[5] CHUNG K W, LUI R. Dynamics of two-strain influenza model with cross-immunity and no quarantine class[J]. Journal of Mathematical Biology, 2016, 73(6/7):1-24.
[6] LIN J, ANDREASEN V, LEVIN S A. Dynamics of influenza A drift: the linear three-strain model[J]. Mathematical Biosciences, 1999, 162(1/2):33-51.
[7] NU(¨overN)O M, FENG Z, CASTILLO-CHAVEZ C. Dynamics of two-strain influenza with isolation and partial cross-immunity[J]. SIAM Journal on Applied Mathematics, 2006, 65(3):964-982.
[8] LARSON H, TYRRELL D, BOWKER C, et al. Immunity to challenge in volunteers vaccinated with an inactivated current or earlier strain of influenza A(H3N2)[J]. J Hyg Cambridge, 1978, 80(2):243-248.
[9] DAVIES J R, GRILLI E A, SMITH A J. Influenza A: infection and reinfection[J]. J Hyg Cambridg, 1984, 92(1):125-127.
[10] LI Haijiao, GUO Shangjiang. Dynamic of a sirc epidemiological model[J]. Electronic Journal of Differential Equations, 2017, 2017(121):1-18.
[11] JIANG Zhichao, MA Wanbiao, WEI Junjie. Global Hopf bifurcation and permanence of a delayed SEIRS epidemic model[J]. Mathematics and Computers in Simulation, 2016, 122(1):35-54.
[12] MANNA K, CHAKRABARTY S P. Global stability of one and two discrete delay models for chronic hepatitis B infection with HBV DNA-containing capsids[J]. Computers Applapplied Mathematics, 2017, 36(1):1-12.
[13] NEOFYTOU G, KYRYCHKO Y N, BLYUSS K B. Time-delayed model of RNA interference[J]. Ecological Complexity, 2017, 30(1):11-25.
[14] WANG Xunyang, HATTAF Khalid, HUO Haifeng, et al. Stability analysic of a delayed social epidemics model with general contact rate and its optimal control[J]. Journal of Industrial and Management Optimization, 2017, 12(4):1267-1285.
[15] ZHANG Yinying, JIA Jianwen. Hopf bifurcation of an epidemic model with a nonlinear birth in population and vertical transmission[J]. Applied Mathematics and Computation. 2014, 230(4):164-173.
[16] SAMANTA G P. Global dynamics of a nonautonomous SIRC model for influenza A with distributed time delay[J]. Differential Equations and Dynamical Systems, 2010, 18(4):341-362.
[17] DIEKMANN O, HEESTERBEEK J A P, METZ J A J. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations[J]. Journal of Mathematical Biology, 1990, 28(4):365-382.
[18] HASSARD B D, HASSARD D B, KAZARINOFF N D, et al. Theory and applications of Hopf bifurcation[M]. Cambridge: Cambridge University Press, 1981.
[19] HU Guangping, LI Xiaoling. Stability and Hopf bifurcation for a delayed predator-prey model with disease in the prey[J]. Chaos, Solitons and Fractals, 2012, 45(3):229-237.
[1] 陈雨佳, 杨和. 一类三阶时滞微分方程在Banach空间中的周期解的存在性[J]. 山东大学学报(理学版), 2018, 53(8): 84-94.
[2] 董兴林,齐欣. 基于时滞效应的青岛市两阶段科技投入与产出互动关系[J]. 山东大学学报(理学版), 2018, 53(5): 80-87.
[3] 陈丽,林玲. 具有时滞效应的股票期权定价[J]. 山东大学学报(理学版), 2018, 53(4): 36-41.
[4] 张道祥,孙光讯,马媛,陈金琼,周文. 带有Holling-III功能反应和线性收获效应的时滞扩散捕食者-食饵系统Hopf分支和空间斑图[J]. 山东大学学报(理学版), 2018, 53(4): 85-94.
[5] 高荣,张焕水. 离散时间多输入时滞随机系统的镇定性[J]. 山东大学学报(理学版), 2017, 52(4): 105-110.
[6] 鞠培军,王伟. 多输入多输出线性系统的时滞界问题[J]. 山东大学学报(理学版), 2017, 52(11): 60-64.
[7] 何志乾, 苗亮英. 带弱奇性的二阶阻尼微分方程正周期解的存在性[J]. 山东大学学报(理学版), 2017, 52(10): 84-88.
[8] 王亚军,张申,胡青松,刘峰,张玉婷. 具有测量噪声的时滞多智能体系统的一致性问题[J]. 山东大学学报(理学版), 2017, 52(1): 74-80.
[9] 王双明. 一类具有时滞的周期流行病模型的动力学分析[J]. 山东大学学报(理学版), 2017, 52(1): 81-87.
[10] 陈彬. 格林函数变号的三阶周期边值问题[J]. 山东大学学报(理学版), 2016, 51(8): 79-83.
[11] 谭成,张焕水. 具有输入时滞的离散时间随机系统Lyapunov镇定性条件[J]. 山东大学学报(理学版), 2016, 51(5): 114-120.
[12] 王长弘,王林山. 基于忆阻器的S-分布时滞随机神经网络的均方指数稳定性[J]. 山东大学学报(理学版), 2016, 51(5): 130-135.
[13] 万树园,王智勇. 一类具有p-Laplace算子的Hamilton系统周期解的存在性[J]. 山东大学学报(理学版), 2016, 51(12): 42-46.
[14] 李琳, 张焕水. 离散时间多输入时滞系统的镇定性问题[J]. 山东大学学报(理学版), 2015, 50(11): 91-97.
[15] 吴成明. 二阶奇异耦合系统正周期解的存在性[J]. 山东大学学报(理学版), 2015, 50(10): 81-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!