《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (8): 33-41.doi: 10.6040/j.issn.1671-9352.0.2018.707
陈瑞鹏,李小亚
CHEN Rui-peng, LI Xiao-ya
摘要: 研究带阻尼项的二阶微分方程u″+p(t)u'+q(t)u=f(t,u)+c(t)正周期解的存在性, 其中 p,q,c∈L1(R/TZ;R), f为Carathéodory函数且在u=0处具有奇异性。运用不动点理论, 为该方程建立了若干正周期解的存在性结果, 所得结果推广并改进了已有文献的相关结论。
中图分类号:
[1] FORBAT F, HUAUX A. Détermination approchée et stabilité locale de la solution périodique dune équation différentielle non linéaire[J]. Mém Public Soc Sci, Artts Lettres Hainaut, 1962, 76(2):3-13. [2] HUAUX A. Sur Lexistence dune solution pe'riodique de l équation différentielle non linéaire (¨overx)+0.2(·overx)+x/(1-x)=(0.5)cos ωt[J]. Bull Cl Sci Acad R Belguique, 1962, 48(5):494-504. [3] MAWHIN J. Topological degree and boundary value problems for nonlinear differential equations[M] // FURI M, ZECCA P. Topological Methods for Ordinary Differential Equations. Berlin: Springer, 1993: 74-142. [4] LAZER A C, SOLIMINI S. On periodic solutions of nonlinear differential equations with singularities[J]. Proceedings of the American Mathematical Society, 1987, 99(1):109-114. [5] GORDON W B. Conservative dynamical systems involving strong forces[J]. Transactions of the American Mathematical Society, 1975, 204(1):113-135. [6] BONHEURE D, FABRY C, SMETS D. Periodic solutions of forced isochronous oscillators at resonance[J]. Discrete and Continuous Dynamical Systems, 2002, 8(4):907-930. [7] FONDA A, MANÁSEVICH R, ZANOLIN F. Subharmonics solutions for some second order differential equations with singularities[J]. SIAM Journal on Mathematical Analysis, 1993, 24(5):1294-1311. [8] HABETS P, SANCHEZ L. Periodic solutions of some Liénard equations with singularities[J]. Proceedings of the American Mathematical Society, 1990, 109(2):1035-1044. [9] JIANG Daqing, CHU Jifeng, ZHANG Meirong. Multiplicity of positive periodic solutions to superlinear repulsive singular equations[J]. Journal of Differential Equations, 2005, 211(2):282-302. [10] DELPINO M, MANÁSEVICH R. Infinitely many T-periodic solutions for a problem arising in nonlinear elasticity[J]. Journal of Differential Equations, 1993, 103(2):260-277. [11] DELPINO M, MANÁSEVICH R, MONTERO A. T-periodic solutions for some second order differential equations with singularities[J]. Proceedings of the Royal Society of Edinburgh(Section A), 1992, 120(1):231-243. [12] RACHUNKOVÁ I, STANEK S, TVRDY M. Singularities and Laplacians in boundary value problems for nonlinear ordinary differential equations[M]. Amsterdam: Elsevier, 2006: 607-722. [13] PEDRO J T. Bounded solutions in singular equations of repulsive type[J]. Nonlinear Analysis, 1998, 32(1):117-125. [14] PEDRO J T, ZHANG Meirong. Twist periodic solutions of repulsive singular equations[J]. Nonlinear Analysis, 2004, 56(4):591-599. [15] ZHANG Meirong. A relationship between the periodic and the Dirichlet BVPs of singular differential equations[J]. Proceedings of the Royal Society of Edinburgh(Section A), 1998, 128(5):1099-1114. [16] RACHUNKOVÁ I, TVRDY M, VRKOC I. Existence of nonnegative and nonpositive solutions for second order periodic boundary value problems[J]. Journal of Differential Equations, 2001, 176(2):445-469. [17] PEDRO J T. Existence of one-signed periodic solutions of some second order differential equations via a Krasnoselskii fixed point theorem[J]. Journal of Differential Equations, 2003, 190(2):643-662. [18] FRANCO D, WEBB J K L. Collisionless orbits of singular and nonsingular dynamical systems[J]. Discrete and Continuous Dynamical Systems, 2006, 15(3):747-757. [19] PEDRO J T. Weak singularities may help periodic solutions to exist[J]. Journal of Differential Equations, 2007, 232(1):277-284. [20] CHU Jifeng, LI Ming. Positive periodic solutions of Hills equations with singular nonlinear perturbations[J]. Nonlinear Analysis, 2008, 69(1):276-286. [21] LI Xiong, ZHANG Ziheng. Periodic solutions for second-order differential equations with a singular nonlinearity[J]. Nonlinear Analysis, 2008, 69(11):3866-3876. [22] MA Ruyun, CHEN Ruipeng, HE Zhiqian. Positive periodic solutions of second-order differential equations with weak singularities[J]. Applied Mathematics and Computation, 2014, 232(1):97-103. [23] HAKL R, PEDRO J T. Maximum and antimaximum principles for a second order differential operator with variable coefficients of indefinite sign[J]. Applied Mathematics and Computation, 2011, 217(19):7599-7611. [24] CHU Jifeng, FAN Ning, PEDRO J T. Periodic solutions for second order singular damped differential equations[J]. Journal of Mathematical Analysis and Applications, 2012, 388(2):665-675. [25] CABADA A, CID J. On the sign of the Greens function associated to Hills equation with an indefinite potential[J]. Applied Mathematics and Computation, 2008, 205(1):303-308. [26] DEIMLING K. Nonlinear functional analysis[M]. Berlin: Springer-Verlag, 1985. |
[1] | 马满堂. 一类非线性二阶系统周期边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(6): 88-95. |
[2] | 章欢,李永祥. 含时滞导数项的高阶常微分方程的正周期解[J]. 《山东大学学报(理学版)》, 2019, 54(4): 29-36. |
[3] | 王娇. 一类非线性二阶常微分方程 Dirichlet问题正解的存在性[J]. 山东大学学报(理学版), 2018, 53(6): 64-69. |
[4] | 叶芙梅. 带导数项共振问题的可解性[J]. 山东大学学报(理学版), 2018, 53(2): 25-31. |
[5] | 甄苇苇,曾剑,任建龙. 基于变分理论与时间相关的抛物型反源问题[J]. 山东大学学报(理学版), 2018, 53(10): 61-71. |
[6] | 张莎,贾梅,李燕,李晓晨. 分数阶脉冲微分方程三点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2017, 52(2): 66-72. |
[7] | 何志乾, 苗亮英. 带弱奇性的二阶阻尼微分方程正周期解的存在性[J]. 山东大学学报(理学版), 2017, 52(10): 84-88. |
[8] | 王双明. 一类具有时滞的周期流行病模型的动力学分析[J]. 山东大学学报(理学版), 2017, 52(1): 81-87. |
[9] | 陈彬. 格林函数变号的三阶周期边值问题[J]. 山东大学学报(理学版), 2016, 51(8): 79-83. |
[10] | 苏艳. 共振离散二阶Neumann问题解的存在性[J]. 山东大学学报(理学版), 2016, 51(6): 37-41. |
[11] | 陈彬,Abuelgasimalshaby Elzebir. 共振条件下的二阶多点边值问题解的存在性和多解性[J]. 山东大学学报(理学版), 2016, 51(4): 49-52. |
[12] | 蔡超. 一类Kolmogorov型方程的系数反演问题[J]. 山东大学学报(理学版), 2016, 51(4): 127-134. |
[13] | 郭丽君. 非线性微分方程三阶三点边值问题正解的存在性[J]. 山东大学学报(理学版), 2016, 51(12): 47-53. |
[14] | 朱雯雯. 带参数的一阶周期边值问题正解的存在性及多解性[J]. 山东大学学报(理学版), 2016, 51(12): 36-41. |
[15] | 吴成明. 二阶奇异耦合系统正周期解的存在性[J]. 山东大学学报(理学版), 2015, 50(10): 81-88. |
|