您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (2): 84-88.doi: 10.6040/j.issn.1671-9352.0.2018.155

• • 上一篇    

一类Schrödinger方程的无穷多非平凡解

吴忆佳,成荣*   

  1. 南京信息工程大学数学与统计学院, 江苏 南京 210044
  • 发布日期:2019-02-25
  • 作者简介:吴忆佳(1993— ),女,硕士研究生,研究方向为变分法和动力系统. E-mail:563100342@qq.com*通信作者简介:成荣(1977— ),男,副教授,研究方向为变分法和动力系统. E-mail:mathchr@163.com
  • 基金资助:
    国家自然科学基金资助项目(11671077)

Infinitely many nontrival solutions for a class of Schrödinger equations

WU Yi-jia, CHENG Rong*   

  1. School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
  • Published:2019-02-25

摘要: 讨论一类具有变号位势的Schrödinger方程的无穷多非平凡解的存在性,其非线性项具有超二次的增长条件,建立了此类方程的无穷多解的存在性结果。结果推广了已有的结论。

关键词: 变分法, Schrö, dinger方程, 临界点

Abstract: This paper considers the existence of infinitely many nontrival solutions for a class of Schrödinger equation with sign-changing potentials. Under the condition that the nonlinearity has superquadratic growth, the existent result is established, which generalizes the existing results.

Key words: variational method, Schrö, dinger equation, critical point

中图分类号: 

  • O175.14
[1] LI Yi. Remarks on a semilinear elliptic equation on RN[J]. Journal of Differential Equations, 1988, 74(1):34-49.
[2] RABINOWITZ P H. On a class of nonlinear Schrödinger equations[J]. Zeitschrift für angewandte Mathematik und Physik ZAMP, 1992, 43(2):270-291.
[3] LIU Xiangqing,HUANG Yisheng. Sign-changing solutions for a class of nonlinear Schrödinger equations[J]. Bulletin of the Australian Mathematical Society, 2009, 80(2):294-305.
[4] CAO Daomin, LI Shuanglong, LUO Peng. Uniqueness of positive bound states with multi-bump for nonlinear Schrödinger equations[J]. Calculus of Variations and Partial Differential Equations, 2015, 54(4):4037-4063.
[5] JUÁREZ HURTADO E, MIYAGAKI O H, RODRIGUES R S. Existence and multiplicity of solutions for a class of elliptic equations without Ambrosetti-Rabinowitz type conditions[J]. Journal of Dynamics and Differential Equations, 2018, 30(2):405-432.
[6] CHEN Huyuan, FELMER P, QUAAS A. Large solution to elliptic equations involving fractional Laplacian[J]. Annales De Linstitut Henri Poincaré, 2015, 32(6):1199-1228.
[7] CHEN Huyuan, VÉRON L. Semilinear fractional elliptic equations involving measures[J]. Journal of Differential Equations, 2014, 257(5):1457-1486.
[8] BARTSCH T, JEANJEAN L, SOAVE N. Normalized solutions for a system of coupled cubic Schrödinger equations on R3[J]. Journal De Mathematiques Pures Et Appliquees, 2016, 106(4):583-614.
[9] BARTSCH T, SOAVE N. A natural constraint approach to normalized solutions on nonlinear Schrödinger equations and systems[J]. Journal of Functional Analysis, 2017, 272(12):4998-5037.
[10] TANG Xianhua. Infinitely many solutions for semilinear Schrödinger equations with sign-changing potential and nonlinearity[J]. Journal of Mathematical Analysis and Applications, 2013, 401(1):407-415.
[11] ZHANG Qingye, XU Bin. Multipicity of solutions for a class of semilinear Schrödinger equations with sign-changing potential[J]. Journal of Mathematical Analysis and Applications, 2001, 377(2):834-840.
[12] ZOU Wenming. Variant fountain theorems and their applications[J]. Manuscripta Mathematica, 2001, 104(3):343-358.
[13] RABINOWITZ P H. Minimax methods in critical point theory with applications to differential equations[J]. Conference Board of the Mathematical Sciences, 1986, 65:1-100.
[1] 张申贵. 四阶变指数椭圆方程Navier边值问题的多解性[J]. 山东大学学报(理学版), 2018, 53(2): 32-37.
[2] 黄爱玲,林帅. 局部量子Bernoulli噪声意义下的随机Schrödinger方程的有限维逼近[J]. 山东大学学报(理学版), 2017, 52(12): 67-71.
[3] 江静,高庆龄,张克玉. 时标上二阶Dirichlet边值问题弱解的存在性[J]. 山东大学学报(理学版), 2016, 51(6): 99-103.
[4] 张申贵. p(x)-调和算子的Kirchhoff型方程的多重解[J]. 山东大学学报(理学版), 2016, 51(10): 48-53.
[5] 孙国伟, 买阿丽. 一类二阶非线性差分方程同宿解的多解性[J]. 山东大学学报(理学版), 2015, 50(05): 51-54.
[6] 王萍莉, 石东洋. Schrödinger方程双线性元的 超收敛分析和外推[J]. 山东大学学报(理学版), 2014, 49(10): 66-71.
[7] 张申贵. 局部超线性p-基尔霍夫方程的多重解[J]. 山东大学学报(理学版), 2014, 49(05): 61-68.
[8] 张国威1,陈昂2. 初始例函数的游荡域的无穷连通性[J]. 山东大学学报(理学版), 2014, 49(04): 70-73.
[9] 张申贵. 一类超线性p(x)-调和方程的无穷多解[J]. J4, 2012, 47(10): 116-120.
[10] 张申贵. 一类非自治二阶系统的多重周期解[J]. J4, 2011, 46(11): 64-69.
[11] 陆瑶1,李德生2,杨洋1. 非线性SchrÖdinger方程的Fourier谱逼近[J]. J4, 2011, 46(1): 119-126.
[12] 朱海霞1,晏世雷2. 随机晶场作用的Blume-Capel模型的相图研究[J]. J4, 2011, 46(1): 51-55.
[13] . 用变分法研究势场V(r)中存在束缚态的条件[J]. J4, 2009, 44(5): 62-66.
[14] 许万银. 一类拟线性Neumann问题的多重解[J]. J4, 2009, 44(10): 39-42.
[15] 张懿彬 . 带指数增长型Neumann边界条件的Laplace方程解的存在性[J]. J4, 2008, 43(3): 48-53 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!