您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (2): 79-83.doi: 10.6040/j.issn.1671-9352.0.2018.017

• • 上一篇    

三角代数上关于内导子空间Lie不变的线性映射

费秀海1,张建华2*   

  1. 1.滇西科技师范学院数学学院, 云南 临沧 677099;2.陕西师范大学数学与信息科学学院, 陕西 西安 710119
  • 发布日期:2019-02-25
  • 作者简介:费秀海(1980— ), 男, 博士, 副教授, 研究方向为算子代数与算子理论. E-mail:xiuhaifei@snnu.edu.cn*通信作者简介:张建华(1965— ), 男, 教授, 博士生导师, 研究方向为算子代数与算子理论. E-mail:jhzhang@snnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11471199,11501419);陕西省自然科学基础研究计划资助项目(2014JQ1015)

Linear maps on triangular algebras for which the space of all inner derivations is Lie invariant

FEI Xiu-hai1, ZHANG Jian-hua2*   

  1. 1. College of Mathematics, Dianxi Science and Technology Normal University, Lincang 677099, Yunnan, China;
    2. College of Mathematics and Information Science, Shaanxi Normal University, Xian 710119, Shaanxi, China
  • Published:2019-02-25

摘要: 设U是一个三角代数且满足πA(Z(U))=Z(A)和πB(Z(U))=Z(B ),φ是U上的一个R-线性映射。若ID(U)是关于φ的一个Lie不变子空间,则在U上存在一个Lie导子δ和一个中心元λ使得对任意的x∈U,有φ(x)=δ(x)+λx。

关键词: 三角代数, Lie不变, Lie导子, 内导子

Abstract: Let U be a triangular algebra with πA(Z(U))=Z(A)and πB(Z(U))=Z(B ), φ be a R-linear mapping from U into itself. If ID(U)is a Lie invariant subspace for φ, then there exists a Lie derivation δ on U and a center element λ such that φ(x)=δ(x)+λx for all x∈U.

Key words: triangular algebra, Lie invariant, Lie derivation, inner derivation

中图分类号: 

  • O177.1
[1] 张建华,曹怀信.套子代数上线性映射的Lie不变子空间[J].数学学报,2004,47(1):119-124. ZHANG Jianhua, CAO Huaixin. Lie invariant subspaces of linear mappings on nest subalgebras [J]. Acta Math Sinica, 2004, 47(1):119-124.
[2] CHEUNG W S. Commuting maps of triangular algebras[J]. J London Math Soc, 2001, 63:117-127.
[3] DU Yiqiu, WANG Yu. k-commuting maps on triangular algebras[J]. Linear Algebra Appl, 2012, 436:1367-1375.
[4] BENKOVIC D, EREMITA D. Commuting traces and commutativity preserving maps on triangular algebras[J]. J Algebra, 2004, 280:797-824.
[5] BENKOVIC D. Jordan derivations and anti-derivations on triangular matrices[J]. Linear Algebra Appl, 2005, 397:235-244.
[6] LI Yanbo, BENKOVIC D. Jordan generalized derivations on triangular algebras[J]. Linear and Multilinear Algebra, 2011, 59(8):841-849.
[7] XIAO Zhankui, WEI Feng. Jordan higher derivations on triangular algebras[J]. Linear Algebra Appl, 2010, 432:2615-2622.
[8] ZHANG Jianhua, YU Weiyan. Jordan derivations of tringular algebras[J]. Linear Algebra Appl, 2006, 419:251-255.
[9] JI Peisheng, QI Weiqing. Characterizations of Lie derivations of triangular algebras[J]. Linear Algebra Appl, 2011, 435:1137-1146.
[10] BENKOVIC D. Generalized Lie deriavtions on triangular algebras[J]. Linear Algebra Appl, 2011, 434:1532-1544.
[11] CHEN Lin, ZHANG Jianhua. Nonlinear Lie derivations on upper triangular matrix algebras[J]. Linear and Multilinear Algebra, 2008, 56(6):725-730.
[12] YU Weiyan, ZHANG Jianhua. Nonlinear Lie derivations of triangular algebras[J]. Linear Algebra Appl, 2010, 432:2953-2960.
[13] FEI Xiuhai, ZHANG Jianhua. Nonlinear generalized Lie derivations of triangular algebras[J]. Linear and Multilinear Algebra, 2017, 65(6):1158-1170.
[14] CHEUNG W S. Mappings on triangular algebras[D]. Victoria: University of Victoria, 2000.
[15] BENKOVIC D. Biderivations of triangular algebras[J]. Linear Algebra Appl, 2009, 431:1587-1602.
[16] CHRISTENSEN E. Derivations of nest algebras[J]. Math Ann, 1977, 229:155-161.
[17] CHEUNG W S. Lie derivations of triangular algebras[J].Linear and Multilinear Algebra, 2003, 51(12):299-310.
[1] 武鹂,张建华. 三角代数上Lie积为平方零元的非线性Jordan可导映射[J]. 山东大学学报(理学版), 2017, 52(12): 42-47.
[2] 胡丽霞,张建华. 三角代数上的零点Lie高阶可导映射[J]. J4, 2013, 48(4): 5-9.
[3] 余维燕1,2,张建华1. 完全矩阵代数上的广义Jordan导子[J]. J4, 2010, 45(4): 86-89.
[4] 纪培胜,綦伟青,刘忠燕 . II1型超有限因子中的三角代数的Jordan理想[J]. J4, 2008, 43(4): 6-08 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!