《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (2): 79-83.doi: 10.6040/j.issn.1671-9352.0.2018.017
• • 上一篇
费秀海1,张建华2*
FEI Xiu-hai1, ZHANG Jian-hua2*
摘要: 设U是一个三角代数且满足πA(Z(U))=Z(A)和πB(Z(U))=Z(B ),φ是U上的一个R-线性映射。若ID(U)是关于φ的一个Lie不变子空间,则在U上存在一个Lie导子δ和一个中心元λ使得对任意的x∈U,有φ(x)=δ(x)+λx。
中图分类号:
[1] 张建华,曹怀信.套子代数上线性映射的Lie不变子空间[J].数学学报,2004,47(1):119-124. ZHANG Jianhua, CAO Huaixin. Lie invariant subspaces of linear mappings on nest subalgebras [J]. Acta Math Sinica, 2004, 47(1):119-124. [2] CHEUNG W S. Commuting maps of triangular algebras[J]. J London Math Soc, 2001, 63:117-127. [3] DU Yiqiu, WANG Yu. k-commuting maps on triangular algebras[J]. Linear Algebra Appl, 2012, 436:1367-1375. [4] BENKOVIC D, EREMITA D. Commuting traces and commutativity preserving maps on triangular algebras[J]. J Algebra, 2004, 280:797-824. [5] BENKOVIC D. Jordan derivations and anti-derivations on triangular matrices[J]. Linear Algebra Appl, 2005, 397:235-244. [6] LI Yanbo, BENKOVIC D. Jordan generalized derivations on triangular algebras[J]. Linear and Multilinear Algebra, 2011, 59(8):841-849. [7] XIAO Zhankui, WEI Feng. Jordan higher derivations on triangular algebras[J]. Linear Algebra Appl, 2010, 432:2615-2622. [8] ZHANG Jianhua, YU Weiyan. Jordan derivations of tringular algebras[J]. Linear Algebra Appl, 2006, 419:251-255. [9] JI Peisheng, QI Weiqing. Characterizations of Lie derivations of triangular algebras[J]. Linear Algebra Appl, 2011, 435:1137-1146. [10] BENKOVIC D. Generalized Lie deriavtions on triangular algebras[J]. Linear Algebra Appl, 2011, 434:1532-1544. [11] CHEN Lin, ZHANG Jianhua. Nonlinear Lie derivations on upper triangular matrix algebras[J]. Linear and Multilinear Algebra, 2008, 56(6):725-730. [12] YU Weiyan, ZHANG Jianhua. Nonlinear Lie derivations of triangular algebras[J]. Linear Algebra Appl, 2010, 432:2953-2960. [13] FEI Xiuhai, ZHANG Jianhua. Nonlinear generalized Lie derivations of triangular algebras[J]. Linear and Multilinear Algebra, 2017, 65(6):1158-1170. [14] CHEUNG W S. Mappings on triangular algebras[D]. Victoria: University of Victoria, 2000. [15] BENKOVIC D. Biderivations of triangular algebras[J]. Linear Algebra Appl, 2009, 431:1587-1602. [16] CHRISTENSEN E. Derivations of nest algebras[J]. Math Ann, 1977, 229:155-161. [17] CHEUNG W S. Lie derivations of triangular algebras[J].Linear and Multilinear Algebra, 2003, 51(12):299-310. |
[1] | 武鹂,张建华. 三角代数上Lie积为平方零元的非线性Jordan可导映射[J]. 山东大学学报(理学版), 2017, 52(12): 42-47. |
[2] | 胡丽霞,张建华. 三角代数上的零点Lie高阶可导映射[J]. J4, 2013, 48(4): 5-9. |
[3] | 余维燕1,2,张建华1. 完全矩阵代数上的广义Jordan导子[J]. J4, 2010, 45(4): 86-89. |
[4] | 纪培胜,綦伟青,刘忠燕 . II1型超有限因子中的三角代数的Jordan理想[J]. J4, 2008, 43(4): 6-08 . |
|