您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (2): 71-78.doi: 10.6040/j.issn.1671-9352.0.2017.464

• • 上一篇    

一类具有耦合积分边值条件的分数阶微分系统正解的存在性

亓婷婷1, 张振福2, 刘衍胜1   

  1. 1. 山东师范大学数学与统计学院, 山东 济南 250014;2. 泰安技师学院教务处, 山东 泰安 271000
  • 发布日期:2019-02-25
  • 作者简介:亓婷婷(1991— ), 女, 硕士研究生, 研究方向为非线性微分方程. E-mail: 13518619015@163.com

Existence of positive solutions for fractional differential system with coupled integral boundary conditions

QI Ting-ting1, ZHANG Zhen-fu2, LIU Yan-sheng1   

  1. 1. School of Mathematics and Statistics, Shandong Normal University, Jinan 250014, Shandong, China;
    2. Taian Technician Institute, Taian 271000, Shandong, China
  • Published:2019-02-25

摘要: 通过选择恰当的Banach空间及其范数,定义合适的算子,利用锥上的不动点定理和分数阶微积分理论,研究一类具有耦合积分边值条件的分数阶微分系统正解的存在性,并给出一个例子说明所得结论的应用。

关键词: 锥上的不动点定理, 耦合积分边值条件, 分数阶微分系统

Abstract: By defining appropriate Banach space and norm, giving the appropriate operators, using fixed-point theorem on cone and fractional calculus, the existence of positive solutions for fractional differential system with coupled integral boundary conditions is investigagted. An example is given to illustrate the application of the main result.

Key words: fixed-point theorem on cone, coupled integral boundary conditions, fractional differential system

中图分类号: 

  • O175.8
[1] HILFER R. Applications of fractional calculus in physics[J]. World Scientific, 2000, 2000(21):1021-1032.
[2] KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and applications of fractional differential equations[M]. North-Holland: Elsevier, 2006.
[3] PODLUBNY I. Fractional differential equations[C] //Mathematics in Science and Engineering. San Diego: Spring, 1999.
[4] SABATIER J, AGRAWAL O P, MACHADO J A T. Advances in fractional calculus: theoretical developments and applications in physics and engineering[J]. Biochemical Journal, 2007, 361(Pt 1):97-103.
[5] JIANG Jiqiang, LIU Lishan, WU Yonghong. Positive solutions to singular fractional differential system with coupled boundary conditions[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(11):3061-3074.
[6] SHI Ailing, ZHANG Shuqin. Upper and lower solutions method and a fractional differential equation boundary value problem[J]. Electronic Journal of Qualitative Theory of Differential Equations, 2009, 2009(30):202-203.
[7] SU Xinwei. Existence of solutions to boundary value problems for a coupled system of nonlinear fractional differential equations[J]. Applied Mathematics Letters, 2009, 22(1):64-69.
[8] ZHANG Xinguang, HAN Yuefeng. Existence and uniqueness of positive solutions for higher order nonlocal fractional differential equations[J]. Applied Mathematics Letters, 2012, 25(3):555-560.
[9] ZHAO Daliang, LIU Yansheng. Multiple positive solutions for nonlinear fractional boundary value problems[J]. Scientific World Journal, 2013, 2013(13):1-9.
[10] HENDERSON J, LUCA R. Existence and multiplicity of positive solutions for a system of fractional boundary value problems[J]. Boundary Value Problems, 2014, 2014(1):1-17.
[11] HENDERSON J, LUCA R. Positive solutions for a system of fractional differential equations with coupled integral boundary conditions[J]. Applied Mathematics and Computation, 2014, 249(249):182-197.
[12] ZHAO Kaihong, GONG Ping. Positive solutions of Riemann-Stieltjes integral boundary problems for the nonlinear coupling system involving fractional-order differential[J]. Advances in Difference Equations, 2014, 2014(1):1-18.
[13] CABADA A, HAMDI Z. Nonlinear fractional differential equations with integral boundary value conditions[J]. Applied Mathematics and Computation, 2014, 228(2012):251-257.
[14] CUI Yujun. Existence of solutions for coupled integral boundary value problem at resonance[J]. Publicationes Mathematicae, 2016, 89(1/2):73-88.
[15] ZHAO Daliang, LIU Yansheng. Positive solutions for a class of fractional differential coupled system with integral boundary value conditions[J]. Journal of Nonlinear Science and Applications, 2016, 9(5):2922-2942.
[16] GUO Dajun, LAKSHMIKANTHAM V. Nonlinear problems in abstract cones[M]. Salt Lake City: Academic Press, 1988.
[1] 巩增泰,高寒. n维模糊数值函数的预不变凸性[J]. 山东大学学报(理学版), 2018, 53(10): 72-81.
[2] 王素云,李永军. 带超越共振点非线性项的二阶常微分方程边值问题的可解性[J]. 山东大学学报(理学版), 2018, 53(6): 53-56.
[3] 王娇. 一类非线性二阶常微分方程 Dirichlet问题正解的存在性[J]. 山东大学学报(理学版), 2018, 53(6): 64-69.
[4] 张申贵. 四阶变指数椭圆方程Navier边值问题的多解性[J]. 山东大学学报(理学版), 2018, 53(2): 32-37.
[5] 叶芙梅. 带导数项共振问题的可解性[J]. 山东大学学报(理学版), 2018, 53(2): 25-31.
[6] 张迪,刘文斌. p(t)-Laplacian算子的分数阶微分方程共振无穷多点边值问题解的存在性[J]. 山东大学学报(理学版), 2017, 52(12): 72-80.
[7] 何志乾, 苗亮英. 带弱奇性的二阶阻尼微分方程正周期解的存在性[J]. 山东大学学报(理学版), 2017, 52(10): 84-88.
[8] 闫东亮. 带有导数项的二阶周期问题正解[J]. 山东大学学报(理学版), 2017, 52(9): 69-75.
[9] 巩增泰,寇旭阳. 集值函数关于模糊测度Choquet积分的表示和积分原函数性质[J]. 山东大学学报(理学版), 2017, 52(8): 1-9.
[10] 李涛涛. 二阶半正椭圆微分方程径向正解的存在性[J]. 山东大学学报(理学版), 2017, 52(4): 48-55.
[11] 崔玉军,赵聪. 四阶微分方程奇异边值问题解的唯一性[J]. 山东大学学报(理学版), 2017, 52(2): 73-76.
[12] 张莎,贾梅,李燕,李晓晨. 分数阶脉冲微分方程三点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2017, 52(2): 66-72.
[13] 李晓燕,徐嫚. 二阶脉冲微分方程Dirichlet问题非平凡解的存在性及多解性[J]. 山东大学学报(理学版), 2016, 51(12): 29-35.
[14] 郭丽君. 非线性微分方程三阶三点边值问题正解的存在性[J]. 山东大学学报(理学版), 2016, 51(12): 47-53.
[15] 朱雯雯. 带参数的一阶周期边值问题正解的存在性及多解性[J]. 山东大学学报(理学版), 2016, 51(12): 36-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!