《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (12): 38-45.

• •

### 一类奇异二阶阻尼差分方程周期边值问题正解的存在性

1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
• 发布日期:2019-12-11
• 作者简介:苏肖肖(1995— ), 女, 硕士研究生, 研究方向为常微分方程边值问题. E-mail:suxiaoxiao2856@163.com
• 基金资助:
国家自然科学基金资助项目(11671322)

### Existence of positive solutions for periodic boundary conditions of singular second-order damped difference equations

SU Xiao-xiao

1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
• Published:2019-12-11

Abstract: This paper studies the existence of positive solutions for periodic boundary value problems of second order damped difference equations{Δ2x(t-1)+αΔx(t-1)+βx(t)=f(t,x(t), Δx(t-1)), t∈［1,T］Z,x(0)=x(T), Δx(0)=Δx(T)where T >2 is an integer, α, β are constants, f(t,x,y):［1,T］Z×(0,∞)×R→R is continuous with respect to (x,y)∈(0,∞)×R, f may be singular at x=0, which means that limx→0+ f(t,x,y)=+∞,(t,y)∈［1,T］Z×R. The proof of main results is based on nonlinear alternative of Leray-Schauder.

• O175.8
 [1] MA Ruyun, MA Huili. Existence of sign-changing periodic solutions of second order difference equations[J]. Applied Mathematics and Computation, 2008, 203(2):463-470.[2] HE Tieshan, XU Yuantong. Positive solutions for nonlinear discrete second-order boundary value problems with parameter dependence[J]. Journal of Mathematical Analysis and Applications, 2011, 379(2):627-636.[3] CABADA A, OTERO-ESPINAR V. Fixed sign solutions of second-order difference equations with Neumann boundary conditions[J]. Computers Mathematics with Applications, 2003, 45(6/7/8/9):1125-1136.[4] BEREANU C, MAWHIN J. Existence and multiplicity results for periodic solutions of nonlinear difference equations[J]. Journal of Difference Equations and Applications, 2006, 12(7):677-695.[5] ATICI F M, GUSEINOV G S. Positive periodic solutions for nonlinear difference equations with periodic coefficients[J]. Journal of Mathematical Analysis and Applications, 1999, 232(1):166-182.[6] ATICI F M, CABADA A. Existence and uniqueness results for discrete second-order periodic boundary value problems[J]. Computers Mathematics with Applications, 2003, 45(6/7/8/9):1417-1427.[7] MA Ruyun, LU Yanqiong, CHEN Tianlan. Existence of one-signed solutions of discrete second-order periodic boundary value problems[J/OL]. Abstract and Applied Analysis, 2012, 2012: 1-13[2019-04-10]. http://dx.doi.org/10.1155/2012/437912.[8] KELLEY W G, PETERSON A C. Difference eauations: an introduction with applications[M]. San Diego: Academic Press, 2001.[9] TORRES P J. Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem[J]. Journal of Differential Equations, 2003, 190(2):643-662.[10] GRANAS A, DUGUNDJI J. Fixed point theory[M]. New York: Springer-Verlag, 2003.
 [1] 桑彦彬,陈娟,任艳. 带有Hardy项的奇异p-重调和方程正解的唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(6): 75-80. [2] 马满堂. 一类非线性二阶系统周期边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(6): 88-95. [3] 何燕琴,韩晓玲. 带积分边界条件的四阶边值问题的单调正解[J]. 《山东大学学报(理学版)》, 2019, 54(12): 32-37. [4] 魏晋滢,王素云,李永军. 一类半正二阶常微分方程边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 7-12. [5] 罗强,韩晓玲,杨忠贵. 三阶时滞微分方程边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 33-39. [6] 宋君秋,贾梅,刘锡平,李琳. 具p-Laplace算子分数阶非齐次边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 57-66. [7] 竺晓霖,翟成波. 一类二阶微分方程Sturm-Liouville边值问题正解的局部存在性与唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 91-96. [8] 王娇. 一类非线性二阶常微分方程 Dirichlet问题正解的存在性[J]. 山东大学学报（理学版）, 2018, 53(6): 64-69. [9] 闫东亮. 带有导数项的二阶周期问题正解[J]. 山东大学学报（理学版）, 2017, 52(9): 69-75. [10] 李涛涛. 二阶半正椭圆微分方程径向正解的存在性[J]. 山东大学学报（理学版）, 2017, 52(4): 48-55. [11] 冯海星,翟成波. 高阶非线性分数阶微分方程系统的多个正解[J]. 山东大学学报（理学版）, 2017, 52(12): 48-57. [12] 陈彬. 格林函数变号的三阶周期边值问题[J]. 山东大学学报（理学版）, 2016, 51(8): 79-83. [13] 仲秋艳,张兴秋. 含参数及p-Laplacian算子的奇异分数阶微分方程积分边值问题的正解[J]. 山东大学学报（理学版）, 2016, 51(6): 78-84. [14] 郭丽君. 非线性微分方程三阶三点边值问题正解的存在性[J]. 山东大学学报（理学版）, 2016, 51(12): 47-53. [15] 刘曼莉,高凌云. 一类复差分方程组的亚纯解[J]. 山东大学学报（理学版）, 2016, 51(10): 34-40.
Viewed
Full text

Abstract

Cited

Shared
Discussed