《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (12): 38-45.doi: 10.6040/j.issn.1671-9352.0.2019.461
• • 上一篇
苏肖肖
SU Xiao-xiao
摘要: 研究了一类奇异二阶阻尼差分方程周期边值问题{Δ2x(t-1)+αΔx(t-1)+βx(t)=f(t,x(t), Δx(t-1)), t∈[1,T]Z,x(0)=x(T), Δx(0)=Δx(T)正解的存在性,其中T >2是一个整数, α、 β均为常数, f(t,x,y):[1,T]Z×(0,∞)×R→R关于(x,y)∈(0,∞)×R连续且允许f在x=0处奇异即limx→0+ f(t,x,y)=+∞,(t,y)∈[1,T]Z×R。主要结果的证明基于Leray-Schauder非线性抉择。
中图分类号:
[1] MA Ruyun, MA Huili. Existence of sign-changing periodic solutions of second order difference equations[J]. Applied Mathematics and Computation, 2008, 203(2):463-470. [2] HE Tieshan, XU Yuantong. Positive solutions for nonlinear discrete second-order boundary value problems with parameter dependence[J]. Journal of Mathematical Analysis and Applications, 2011, 379(2):627-636. [3] CABADA A, OTERO-ESPINAR V. Fixed sign solutions of second-order difference equations with Neumann boundary conditions[J]. Computers Mathematics with Applications, 2003, 45(6/7/8/9):1125-1136. [4] BEREANU C, MAWHIN J. Existence and multiplicity results for periodic solutions of nonlinear difference equations[J]. Journal of Difference Equations and Applications, 2006, 12(7):677-695. [5] ATICI F M, GUSEINOV G S. Positive periodic solutions for nonlinear difference equations with periodic coefficients[J]. Journal of Mathematical Analysis and Applications, 1999, 232(1):166-182. [6] ATICI F M, CABADA A. Existence and uniqueness results for discrete second-order periodic boundary value problems[J]. Computers Mathematics with Applications, 2003, 45(6/7/8/9):1417-1427. [7] MA Ruyun, LU Yanqiong, CHEN Tianlan. Existence of one-signed solutions of discrete second-order periodic boundary value problems[J/OL]. Abstract and Applied Analysis, 2012, 2012: 1-13[2019-04-10]. http://dx.doi.org/10.1155/2012/437912. [8] KELLEY W G, PETERSON A C. Difference eauations: an introduction with applications[M]. San Diego: Academic Press, 2001. [9] TORRES P J. Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem[J]. Journal of Differential Equations, 2003, 190(2):643-662. [10] GRANAS A, DUGUNDJI J. Fixed point theory[M]. New York: Springer-Verlag, 2003. |
[1] | 桑彦彬,陈娟,任艳. 带有Hardy项的奇异p-重调和方程正解的唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(6): 75-80. |
[2] | 马满堂. 一类非线性二阶系统周期边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(6): 88-95. |
[3] | 何燕琴,韩晓玲. 带积分边界条件的四阶边值问题的单调正解[J]. 《山东大学学报(理学版)》, 2019, 54(12): 32-37. |
[4] | 魏晋滢,王素云,李永军. 一类半正二阶常微分方程边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 7-12. |
[5] | 罗强,韩晓玲,杨忠贵. 三阶时滞微分方程边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 33-39. |
[6] | 宋君秋,贾梅,刘锡平,李琳. 具p-Laplace算子分数阶非齐次边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 57-66. |
[7] | 竺晓霖,翟成波. 一类二阶微分方程Sturm-Liouville边值问题正解的局部存在性与唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 91-96. |
[8] | 王娇. 一类非线性二阶常微分方程 Dirichlet问题正解的存在性[J]. 山东大学学报(理学版), 2018, 53(6): 64-69. |
[9] | 闫东亮. 带有导数项的二阶周期问题正解[J]. 山东大学学报(理学版), 2017, 52(9): 69-75. |
[10] | 李涛涛. 二阶半正椭圆微分方程径向正解的存在性[J]. 山东大学学报(理学版), 2017, 52(4): 48-55. |
[11] | 冯海星,翟成波. 高阶非线性分数阶微分方程系统的多个正解[J]. 山东大学学报(理学版), 2017, 52(12): 48-57. |
[12] | 陈彬. 格林函数变号的三阶周期边值问题[J]. 山东大学学报(理学版), 2016, 51(8): 79-83. |
[13] | 仲秋艳,张兴秋. 含参数及p-Laplacian算子的奇异分数阶微分方程积分边值问题的正解[J]. 山东大学学报(理学版), 2016, 51(6): 78-84. |
[14] | 郭丽君. 非线性微分方程三阶三点边值问题正解的存在性[J]. 山东大学学报(理学版), 2016, 51(12): 47-53. |
[15] | 刘曼莉,高凌云. 一类复差分方程组的亚纯解[J]. 山东大学学报(理学版), 2016, 51(10): 34-40. |
|