《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (9): 54-61.doi: 10.6040/j.issn.1671-9352.0.2018.667
李海侠
LI Hai-xia
摘要: 研究了一类具有密度制约的捕食-食饵模型共存解的唯一性和渐近行为。利用不动点指数理论给出了共存解存在的充分条件。然后采用线性算子的扰动理论讨论了共存解的唯一性和稳定性。最后运用抛物方程的比较原理得到了系统的持久性和灭绝性条件,并通过数值模拟对其理论结果进行了验证。结果表明在一定条件下两物种共存且系统存在稳定的唯一共存解。
中图分类号:
[1] WU J H. Stability and persistence for prey-predator model with saturation[J].Chinese Science Bulletin,1998, 43(24):2102-2103. [2] DU Y H, SHI J P. A diffusive predator-prey model with a protection zone[J]. Journal of Differential Equations, 2006, 229(1):63-91. [3] PENG R, WANG M X. Note on a ratio-dependent predator-prey system with diffusion[J]. Nonlinear Analysis: Real World Applications, 2006, 1(7):1-11. [4] KO W, KYU K. Qualitative analysis of a predator-prey model with Holling type-II functional response incorporating a prey refuge[J]. Journal of Differential Equations, 2006, 231(2):534-550. [5] WANG Z G, WU J H. Qualitative analysis for a ratio-dependent predator-prey model with stage structure and diffusion[J]. Nonlinear Analysis, 2008, 9(5):2270-2287. [6] PENG R, SHI J P. Non-existence of non-constant positive steady states of two Holling type-II predator-prey systems: strong interaction case[J]. Journal of Differential Equations, 2009, 247(3):866-886. [7] YI F Q, WEI J J, SHI J P. Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system[J]. Journal of Differential Equations, 2009, 246(5):1944-1977. [8] JIA Y F, WU J H, NIE H. The coexistence states of a predator-prey model with non-monotonic functional response and diffusion[J]. Acta Applicandae Mathematicae, 2009, 108(2):413-428. [9] GUO G H, WU J H. Multiplicity and uniqueness of positive solutions for a predator-prey model with B-D functional response[J]. Nonlinear Analysis, 2010, 72(3/4):1632-1646. [10] WEI M H, WU J H, GUO G H. The effect of predator competition on positive solutions for a predator-prey model with diffusion[J]. Nonlinear Analysis, 2012, 75(13):5053-5068. [11] YANG W S, LI Y Q. Dynamics of a diffusive predator-prey model with modified Leslie-Gower and Holling-type III schemes[J]. Computers and Mathematics with Applications, 2013, 65(11):1727-1737. [12] ZHOU J, SHI J P. The existence, bifurcation and stability of positive stationary solutions of a diffusive Leslie-Gower predator-prey model with Holling-type II functional responses[J]. Journal of Mathematical Analysis and Applications, 2013, 405(2):618-630. [13] LI H X. Asymptotic behavior and multiplicity for a diffusive Leslie-Gower predator-prey system with Crowley-Martin functional response[J]. Computers and Mathematics with Applications, 2014, 68(7):693-705. [14] 李海侠.带有保护区域的加法Allee效应捕食-食饵模型的共存解[J].山东大学学报(理学版),2015,50(5):9-15. LI Haixia. Coexistence solutions for a predator-prey model with additive Allee effect and a protection zone[J]. Journal of Shandong University(Natural Science), 2015, 50(5):9-15. [15] JIANG H L, WANG L J, YAO R F. Numerical simulation and qualitative analysis for a predator-prey model with B-D functional response[J]. Mathematics and Computers in Simulation, 2015, 117(2):39-53. [16] LI S B, WU J H. Qualitative analysis of a predator-prey model with predator saturation and competition[J]. Acta Applicandae Mathematicae, 2016, 141(1):165-185. [17] LI H X, LI Y L,YANG W B. Existence and asymptotic behavior of positive solutions for a one-prey and two-competing-predators system with diffusion[J]. Nonlinear Analysis: Real World Applications, 2016, 27:261-282. [18] 李海侠. 一类食物链模型正解的稳定性和唯一性[J].数学物理学报A辑,2017,37(6):1094-1104. LI Haixia. Stability and uniqueness of positive solutions for a food-chain model[J]. Acta Mathematica Scientia-Series A, 2017, 37(6):1094-1104. [19] HUANG K G, CAI L, FU S M. Positive steady states of a density-dependent predator-prey model with diffusion[J]. Discrete and Continuous Dynamical Systems-Series B, 2018, 23(8):3087-3107. [20] DANCER E N. On the indices of fixed points of mapping in cones and applications [J]. Journal of Mathematical Analysis and Applications, 1983, 91(1):131-151. [21] PAO C V. Quasisolutions and global attractor of reaction-diffusion systems[J]. Nonlinear Analysis, 1996, 26(12): 1889-1903. |
[1] | 任建龙. 利用内部温度史重构表面未知热通量[J]. 《山东大学学报(理学版)》, 2019, 54(9): 83-90. |
[2] | 张伟杰,王新利,王汉杰. 亚纯函数微分多项式IM分担值的唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(8): 90-96. |
[3] | 桑彦彬,陈娟,任艳. 带有Hardy项的奇异p-重调和方程正解的唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(6): 75-80. |
[4] | 章欢,李永祥. 含时滞导数项的高阶常微分方程的正周期解[J]. 《山东大学学报(理学版)》, 2019, 54(4): 29-36. |
[5] | 王素云,李永军. 带超越共振点非线性项的二阶常微分方程边值问题的可解性[J]. 山东大学学报(理学版), 2018, 53(6): 53-56. |
[6] | 肖新玲. 由马氏链驱动的正倒向随机微分方程[J]. 山东大学学报(理学版), 2018, 53(4): 46-54. |
[7] | 甄苇苇,曾剑,任建龙. 基于变分理论与时间相关的抛物型反源问题[J]. 山东大学学报(理学版), 2018, 53(10): 61-71. |
[8] | 闫东亮. 带有导数项的二阶周期问题正解[J]. 山东大学学报(理学版), 2017, 52(9): 69-75. |
[9] | 张莎,贾梅,李燕,李晓晨. 分数阶脉冲微分方程三点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2017, 52(2): 66-72. |
[10] | 扈培础,吴爱迪. 关于L-函数的问题[J]. 山东大学学报(理学版), 2016, 51(6): 1-15. |
[11] | 蔡超. 一类Kolmogorov型方程的系数反演问题[J]. 山东大学学报(理学版), 2016, 51(4): 127-134. |
[12] | 董建伟,娄光谱,王艳萍. 一个半导体简化能量输运模型稳态解的唯一性[J]. 山东大学学报(理学版), 2016, 51(2): 37-41. |
[13] | 郭丽君. 非线性微分方程三阶三点边值问题正解的存在性[J]. 山东大学学报(理学版), 2016, 51(12): 47-53. |
[14] | 王先飞, 江龙, 马娇娇. 具有Osgood型生成元的多维倒向重随机微分方程[J]. 山东大学学报(理学版), 2015, 50(08): 24-33. |
[15] | 徐嫚. 带双参数的脉冲泛函微分方程正周期解的存在性[J]. 山东大学学报(理学版), 2015, 50(06): 69-74. |
|