您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (9): 35-41.doi: 10.6040/j.issn.1671-9352.0.2020.457

• • 上一篇    

一类带参数四阶边值问题正解的存在性

杨丽娟   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 发布日期:2021-09-13
  • 作者简介:杨丽娟(1997— ), 女, 硕士研究生, 研究方向为常微分方程边值问题. E-mail:18419068954@163.com
  • 基金资助:
    国家自然科学基金资助项目(11671322)

Existence of positive solutions for a class of fourth-order boundary value problems with parameter

YANG Li-juan   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2021-09-13

摘要: 研究了带参数四阶常微分方程(ordinary differential equation, ODE)边值问题{u'(t)+au(t)+bu″(t)+cu'(t)+du(t)=rf(t,u(t),u″(t)), 0

关键词: 四阶ODE, 正解, 分歧理论, Krein-Rutman定理

Abstract: This article studies the boundary value problems of fourth-order ordinary differential equations with parameter{u'(t)+au(t)+bu″(t)+cu'(t)+du(t)=rf(t,u(t),u″(t)), 01,u(0)=u(1)=u″(0)=u″(1)=0,where r is a positive parameter, a,b,c,d are constant coefficients, and the nonlinearity f: [0,1]×[0,∞)×(-∞,0]→[0,∞) is a continuous function. When r is in a cetain range of values, the existence of positive solutions are obtained by using global bifurcation theorem.

Key words: fourth-order ODE, positive solution, bifurcation theorem, Krein-Rutman theorem

中图分类号: 

  • O175.14
[1] LI Yongxiang. Positive solutions of fourth-order boundary value prolems with two parameters[J]. Journal of Mathmatical Analysis and Applications, 2003, 281(2):477-484.
[2] MA Ruyun, WANG Jinxiang, LONG Yan. Lower and upper solution method for the problem of elastic beam with hinged ends[J]. Journal of Fixed Point Theory and Applications, 2018, 20(1):1-13.
[3] MA R Y, WANG H Y, ELSANOSI M. Spectrum of a linear fourth-order differential operator and its applications[J]. Mathematische Nachrichten, 2013, 286(17/18):1805-1819.
[4] DANG Q, DANG Q L, QUY N T K. A novel efficient method for nonlinear boundary value problems[J]. Numerical Algorithms, 2017, 76(2):427-439.
[5] BAI Zhanbing. The method of lower and upper solutions for a bending of an elastic equation[J]. Journal of Mathmatical Analysis and Applications, 2000, 248(1):195-202.
[6] CABADA A, CID J A, SANCHEZ L. Positivity and lower and upper solutions for fourth order boundary vlaue problems[J]. Nonlinear Analysis, 2007, 67(5):1599-1612.
[7] YAN Dongliang, MA Ruyun, SU Xiaoxiao. Global structure of one-sign solutions for a simply supported beam equation[J]. Journal of Inequalities and Applications, 2020, 112:1-11.
[8] MA Ruyun. Existence of positive solutions of a fourth-order boundary value problem[J]. Applied Mathematics and Computation, 2005, 168(2):1219-1231.
[9] 徐登洲, 马如云. 线性微分方程的非线性扰动[M]. 北京: 科学出版社, 2008. XU Dengzhou, MA Ruyun. Nonlinear perturbation of linear differential equations[M]. Beijing: Science Press, 2008.
[10] 王高雄, 周之铭, 朱思铭, 等. 常微分方程[M]. 北京: 高等教育出版社, 2006. WANG Gaoxiong, ZHOU Zhiming, ZHU Siming, et al. Ordinary differential equation[M]. Beijing: Higher Education Press, 2006.
[11] AMANN H. Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces[J]. SIAM Review, 1976, 18(4):620-709.
[1] 苏肖肖, 张亚莉. 带阻尼项的二阶差分方程周期边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 56-63.
[2] 刘梦雪, 李杰梅, 姚燕燕. 带有非线性边界条件的四阶边值问题的多解性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 84-91.
[3] 张亚莉. 一类含一阶导数的四阶边值问题正解的全局结构[J]. 《山东大学学报(理学版)》, 2020, 55(8): 102-110.
[4] 王晶晶,路艳琼. 一类半正非线性弹性梁方程边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 84-92.
[5] 王晶晶,路艳琼. 二阶微分方程Neumann边值问题最优正解的存在性[J]. 《山东大学学报(理学版)》, 2020, 55(3): 113-120.
[6] 赵娇. 一类非线性三阶边值问题正解集的全局结构[J]. 《山东大学学报(理学版)》, 2020, 55(10): 104-110.
[7] 马满堂. 一类非线性二阶系统周期边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(6): 88-95.
[8] 桑彦彬,陈娟,任艳. 带有Hardy项的奇异p-重调和方程正解的唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(6): 75-80.
[9] 苏肖肖. 一类奇异二阶阻尼差分方程周期边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(12): 38-45.
[10] 何燕琴,韩晓玲. 带积分边界条件的四阶边值问题的单调正解[J]. 《山东大学学报(理学版)》, 2019, 54(12): 32-37.
[11] 魏晋滢,王素云,李永军. 一类半正二阶常微分方程边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 7-12.
[12] 罗强,韩晓玲,杨忠贵. 三阶时滞微分方程边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 33-39.
[13] 宋君秋,贾梅,刘锡平,李琳. p-Laplace算子分数阶非齐次边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 57-66.
[14] 竺晓霖,翟成波. 一类二阶微分方程Sturm-Liouville边值问题正解的局部存在性与唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 91-96.
[15] 王娇. 一类非线性二阶常微分方程 Dirichlet问题正解的存在性[J]. 山东大学学报(理学版), 2018, 53(6): 64-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!