《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (2): 56-63.doi: 10.6040/j.issn.1671-9352.0.2020.361
苏肖肖,张亚莉
SU Xiao-xiao, ZHANG Ya-li
摘要: 研究了格林函数非负时带阻尼项的二阶差分方程周期边值问题{Δ2x(t-1)+p(t)Δx(t-1)+q(t)x(t)=f(t,x(t),Δx(t-1)), t∈[1,T]Z,x(0)=x(T), Δx(0)=Δx(T)正解的存在性, 其中T > 2是一个整数, p(·)、q(·)均为函数, f(t,x,y):[1,T]Z×(0,∞)×R→R关于(x,y)∈(0,∞)×R连续。主要结果的证明基于Leray-Schauder非线性抉择和Schauder不动点定理。
中图分类号:
[1] MA Ruyun, MA Huili. Existence of sign-changing periodic solutions of second order difference equations[J]. Applied Mathematics and Computation, 2008, 203(2):463-470. [2] HE Tieshan, XU Yuantong. Positive solutions for nonlinear discrete second-order boundary value problems with parameter dependence[J]. Journal of Mathematical Analysis and Applications, 2011, 379(2):627-636. [3] BEREANU C, MAWHIN J. Existence and multiplicity results for periodic solutions of nonlinear difference equations[J]. Journal of Difference Equations and Applications, 2006, 12(7):677-695. [4] ATICI F M, GUSEINOV G S. Positive periodic solutions for nonlinear difference equations with periodic coefficients[J]. Journal of Mathematical Analysis and Applications, 1999, 232(1):166-182. [5] ATICI F M, CABADA A. Existence and uniqueness results for discrete second-order periodic boundary value problems[J]. Computers Mathematics with Applications, 2003, 45(6/7/8/9):1417-1427. [6] MA Ruyun, LU Yanqiong, CHEN Tianlan. Existence of one-signed solutions of discrete second-order periodic boundary value problems[J/OL]. Abstract and Applied Analysis, 2012[2020-5-21]. http://dx.doi.org/10.1155/2012/437912. [7] 蒋玲芳. 二阶奇异离散周期边值问题正解的存在性和多解性[J]. 内蒙古大学学报(自然科学版), 2013, 44(4): 345-351. JIANG Lingfang. Existence and multiplicity of positive solution for second order periodic discrete boundary value problem with singularities[J]. Journal of Inner Mongolia University(Natural Science), 2013, 44(4):345-351. [8] LIAO Fangfang. Periodic solutions of second order differential equations with vanishing Greens functions[J/OL]. Electronic Journal of Qualitative Theory of Differential Equations, 2017[2020-05-21]. http://www.math.u-szeged.hu/ejqtde/p5704.pdf. [9] 陈瑞鹏, 李小亚. 带阻尼项的二阶奇异微分方程的正周期解[J]. 山东大学学报(理学版), 2019, 54(8):33-41. CHEN Ruipeng, LI Xiaoya. Positive periodic solutions for second-order singular differential equations with damping terms[J]. Journal of Shandong University(Natural Science), 2019, 54(8):33-41. [10] ZHANG Meirong. Optimal conditions for maximum and antimaximum principles of the periodic solution problem[J/OL]. Boundary Value Problems, 2010[2020-05-21]. https://sci-hub.tw/10.1155/2010/410986. [11] HAKL R, TORRES P J. Maximum and antimaximum principles for a second order differential operator with variable coefficients of indefinite sign[J]. Applied Mathematics and Computation, 2011, 217(19):7599-7093. [12] GRAEF J R, KONG L J, WANG H Y. A periodic boundary value problem with vanishing Greens function[J]. Applied Mathematics Letters, 2008, 21(2):176-180. [13] GRANAS A, DUGUNDJI J. Fixed point theory[M]. New York: Springer-Verlag, 2003: 249-368. |
[1] | 刘梦雪, 李杰梅, 姚燕燕. 带有非线性边界条件的四阶边值问题的多解性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 84-91. |
[2] | 张亚莉. 一类含一阶导数的四阶边值问题正解的全局结构[J]. 《山东大学学报(理学版)》, 2020, 55(8): 102-110. |
[3] | 王晶晶,路艳琼. 一类半正非线性弹性梁方程边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 84-92. |
[4] | 王晶晶,路艳琼. 二阶微分方程Neumann边值问题最优正解的存在性[J]. 《山东大学学报(理学版)》, 2020, 55(3): 113-120. |
[5] | 赵娇. 一类非线性三阶边值问题正解集的全局结构[J]. 《山东大学学报(理学版)》, 2020, 55(10): 104-110. |
[6] | 桑彦彬,陈娟,任艳. 带有Hardy项的奇异p-重调和方程正解的唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(6): 75-80. |
[7] | 马满堂. 一类非线性二阶系统周期边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(6): 88-95. |
[8] | 苏肖肖. 一类奇异二阶阻尼差分方程周期边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(12): 38-45. |
[9] | 何燕琴,韩晓玲. 带积分边界条件的四阶边值问题的单调正解[J]. 《山东大学学报(理学版)》, 2019, 54(12): 32-37. |
[10] | 魏晋滢,王素云,李永军. 一类半正二阶常微分方程边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 7-12. |
[11] | 罗强,韩晓玲,杨忠贵. 三阶时滞微分方程边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 33-39. |
[12] | 宋君秋,贾梅,刘锡平,李琳. 具p-Laplace算子分数阶非齐次边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 57-66. |
[13] | 竺晓霖,翟成波. 一类二阶微分方程Sturm-Liouville边值问题正解的局部存在性与唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 91-96. |
[14] | 王娇. 一类非线性二阶常微分方程 Dirichlet问题正解的存在性[J]. 山东大学学报(理学版), 2018, 53(6): 64-69. |
[15] | 闫东亮. 带有导数项的二阶周期问题正解[J]. 山东大学学报(理学版), 2017, 52(9): 69-75. |
|