您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (7): 22-34.doi: 10.6040/j.issn.1671-9352.0.2020.668

• • 上一篇    

星图上的一类非线性Caputo序列分数阶微分方程边值问题解的存在性

李宁,顾海波*,马丽娜   

  1. 新疆师范大学数学科学学院, 新疆 乌鲁木齐 830017
  • 发布日期:2022-06-29
  • 作者简介:李宁(1995— ),男,硕士研究生,研究方向为微分方程理论及其应用研究.E-mail:2084679136@qq.com*通信作者简介:顾海波(1982— ),男,教授,硕士生导师,研究方向为微分方程理论及其应用研究.E-mail:hbgu_math@163.com
  • 基金资助:
    国家自然科学基金资助项目(11961069);新疆维吾尔自治区优秀青年科技人才培训计划项目(2019Q022);新疆维吾尔自治区自然科学基金资助项目(2019D01A71);新疆维吾尔自治区高校科研计划(XJEDU2018Y033);新疆维吾尔自治区研究生科研创新项目(XJ2021G260)

Existence of solutions for boundary value problems of a class of nonlinear Caputo type sequential fractional differential equations on star graphs

LI Ning, GU Hai-bo*, MA Li-na   

  1. College of Mathematical Sciences, Xinjiang Normal University, Urumqi 830017, Xinjiang, China
  • Published:2022-06-29

摘要: 研究了一类定义在由3个节点和两条边构成的星图上的非线性Caputo类型的序列分数阶微分方程边值问题(boundary value problem, BVP)解的存在性。通过变量变换,将所研究的带混合边界条件具有不同定义域的分数阶微分方程组转化为等价的具有相同定义域的带同等边界条件的微分方程组。然后借助Schaefer和Schauder不动点定理得到了边值问题解存在的充分条件,借助Banach不动点定理得到了边值问题解存在且唯一的充分条件。

关键词: 分数阶微积分, 星图上的微分方程, 边值问题, 格林函数

Abstract: The existence of solutions for a class of nonlinear Caputo type sequential fractional differential equations BVP on a star graph consisting of three nodes and two edges is investigated. By using variable transformation, the system of fractional differential equations, with mixed boundary conditions and the different domain, is transformed into an equivalent system of differential equations with the same boundary conditions and domain. Then, by using Schaefer fixed point theory and Schauder fixed point theory, a sufficient condition is obtained for the existence of solutions to boundary value problems, and by means of Banach fixed point theory, a sufficient condition is obtained for the existence and uniqueness of solutions to boundary value problems.

Key words: fractional calculus, differential equations on star graph, boundary value problem, Greens function

中图分类号: 

  • O175.14
[1] AGARWAL R, OREGAN D, STANEK S. Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations[J]. Math Anal Appl, 2010, 371:57-68.
[2] AHMAD B, NIETO J J. Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions[J]. Comput Math Appl, 2009, 58(9):1838-1843.
[3] BAI Zhanbing, LÜ Haishen. Positive solutions for boundary value problem of nonlinear fractional differential equation[J]. Math Anal Appl, 2005, 311(2):495-505.
[4] FENG Meiqiang, ZHANG Xuemei, GE Weigao. New existence results for higher-order nonlinear fractional differential equation with integral boundary conditions[J]. Bound Value Probl, 2011(2011):1-20.
[5] GOODRICH C. Existence of a positive solution to a class of fractional differential equations[J]. Appl Math Lett, 2010, 23(9):1050-1055.
[6] GRAEF J R, KONG Lingju. Existence of positive solutions to a higher order singular boundary value problem with fractional q-derivatives[J]. Fract Calc Appl Anal, 2013, 16(3):695-708.
[7] GRAEF J R, KONG Lingju, KONG Qingkai, et al. Uniqueness of positive solutions of fractional boundary value problems with non-homogeneous integral boundary conditions[J]. Fract Calc Appl Anal, 2012, 15(3):509-528.
[8] GRAEF J R, KONG Lingju, KONG Qingkai, et al. Fractional boundary value problems with integral boundary conditions[J]. Appl Anal 2013, 92(10):2008-2020.
[9] GRAEF J R, KONG Lingju, KONG Qingkai, et al. Positive solutions of nonlocal fractional boundary value problems[J]. Discrete Contin Dyn Syst Suppl, 2013(2013):283-290.
[10] GRAEF J R, KONG Lingju, KONG Qingkai, et al. Existence and uniqueness of solutions for a fractional boundary value problem with Dirichlet boundary condition Electron[J]. Qual Theory Differ Equ, 2013(2013):1-11.
[11] GRAEF J R, KONG Lingju, YANG Bo. Positive solutions for a semipositone fractional boundary value problem with a forcing term[J]. Fract Calc Appl Anal, 2012, 15(1):8-24.
[12] HENDERSON J, LUCA R. Positive solutions for a system of nonlocal fractional boundary value problems[J]. Fract Calc Appl Anal, 2012, 16(4):985-1008.
[13] JIANG Daqing, YUAN Chengjun. The positive properties of the Green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application[J]. Nonlinear Anal, 2010, 72(2):710-719.
[14] KONG Qingkai, WANG Min. Positive solutions of nonlinear fractional boundary value problems with Dirichlet boundary conditions[J]. Electron Qual Theory Differ Equ, 2012(2012):1-13.
[15] AVDONIN S. Control problems on quantum graphs[C] // Proc Sympos Pure Math, 2008: 507-521.
[16] CURRIE S, WATSON B. Indefinite boundary value problems on graphs[J]. Oper Matrices, 2011, 5:565-584.
[17] CURRIE S, WATSON B. Dirichlet-Neumann bracketing for boundary value problems on graphs[J]. Electron Differential Equations, 2005: 1-11.
[18] GORDEZIANI D G, KUPREISHVILI M, MELADZE H V, et al. On the solution of boundary value problem for differential equations given in graphs[J]. Appl Math Inform Mech, 2008, 13(2):80-91.
[19] GORDEZIANI D G, MELADZE H V, DAVITASHVILI T D. On one generalization of boundary value problem for ordinary differential equations on graphs in the three-dimensional space[J].WSEAS Trans Math, 2009, 8(8):457-466.
[20] KUCHMENT P. Graph models for waves in thin structures[J]. Waves in Random Media, 2002(4):1-24.
[21] KUCHMENT P. Quantum graphs: an introduction and a brief survey[J]. Proc Symp Pure Math, 2008: 291-314.
[22] POKORNYI Y V, BOROVSKIKH A V. Differential equations on networks(geometric graphs)[J]. Journal of Mathematical Sciences, 2004, 119(6):691-718.
[23] GRAEF J F, KONG Liuju, WANG Min. Existence and uniqueness of solutions for a fractional boundary value problem on a graph[J]. Fract Calc Appl Anal, 2014, 17(2):499-510.
[24] MEHANDIRATTA V, MEHRA M, LEUGERING G. Existence and uniqueness results for a nonlinear Caputo fractional boundary value problem on a star graph[J]. Math Anal Appl, 2019, 477(2):1243-1264.
[25] ZHANG Shuqin. Positive solutions for boundary value problems of nonlinear fractional differential equations[J]. Electron Differential Equations, 2006(2006):1-12.
[26] GRANAS A, DUGUNDJI J. Fixed point theory[M]. New York: Springer-Verlag, 2003.
[1] 王凤霞,熊向团. 非齐次热方程侧边值问题的拟边值正则化方法[J]. 《山东大学学报(理学版)》, 2021, 56(6): 74-80.
[2] 苏肖肖, 张亚莉. 带阻尼项的二阶差分方程周期边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 56-63.
[3] 杨晓梅,路艳琼,王瑞. 二阶离散Neumann边值问题的Ambrosetti-Prodi型结果[J]. 《山东大学学报(理学版)》, 2021, 56(2): 64-74.
[4] 杜睿娟. 一类三阶m-点边值问题在dim Ker L=2共振情形下的可解性[J]. 《山东大学学报(理学版)》, 2021, 56(12): 33-39.
[5] 王天祥,李永祥. 一类四阶周期边值问题解的存在性与唯一性[J]. 《山东大学学报(理学版)》, 2020, 55(7): 16-21.
[6] 王晶晶,路艳琼. 一类半正非线性弹性梁方程边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 84-92.
[7] 王晶晶,路艳琼. 二阶微分方程Neumann边值问题最优正解的存在性[J]. 《山东大学学报(理学版)》, 2020, 55(3): 113-120.
[8] 赵娇. 一类非线性三阶边值问题正解集的全局结构[J]. 《山东大学学报(理学版)》, 2020, 55(10): 104-110.
[9] 孙妍妍,刘衍胜. 抽象空间中Hadamard分数阶微分方程奇异边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2020, 55(10): 95-103.
[10] 苏肖肖. 一类奇异二阶阻尼差分方程周期边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(12): 38-45.
[11] 何燕琴,韩晓玲. 带积分边界条件的四阶边值问题的单调正解[J]. 《山东大学学报(理学版)》, 2019, 54(12): 32-37.
[12] 魏晋滢,王素云,李永军. 一类半正二阶常微分方程边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 7-12.
[13] 罗强,韩晓玲,杨忠贵. 三阶时滞微分方程边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 33-39.
[14] 竺晓霖,翟成波. 一类二阶微分方程Sturm-Liouville边值问题正解的局部存在性与唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 91-96.
[15] 王素云,李永军. 带超越共振点非线性项的二阶常微分方程边值问题的可解性[J]. 山东大学学报(理学版), 2018, 53(6): 53-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!