《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (2): 64-74.doi: 10.6040/j.issn.1671-9352.0.2020.351
• • 上一篇
杨晓梅,路艳琼,王瑞
YANG Xiao-mei, LU Yan-qiong, WANG Rui
摘要: 运用上下解方法和拓扑度理论,研究二阶离散Neumann边值问题{Δ2u(t-1)+g(t,u(t))=s, t∈[1,T]Z,Δu(0)=Δu(T)=0解的个数与参数s的关系,其中s∈R, g:[1,T]Z×R→R连续,[1,T]Z:={1, 2, …, T},存在一个常数 s0∈R,使得当s0时,该问题无解;s=s0时,该问题至少有一个解;s>s0时,该问题至少有两个解。
中图分类号:
[1] AMBROSETTI A, PRODI G. On the inversion of some differentiable mappings with singularities between Banach space[J]. Ann Mat Pura Appl, 1972, 93(4):231-246. [2] 马陆一. 非线性二阶Neumann边值问题的Ambrosetti-Prodi型结果[J]. 山东大学学报(理学版), 2015, 50(3):62-66. MA Luyi. The Ambrosetti-Prodi type results of the nonlinear second-order Neumann boundary value problem[J]. Journal of Shandong University(Natural Science), 2015, 50(3):62-66. [3] SOVRANO E. Ambrosetti-Prodi type result to a Neumann problem via a topological approach[J]. Discrete Conti Dyn Syst Ser S, 2018, 11(2):345-355. [4] ERBE L H, WANG H Y. On the existence of positive solutions of ordinary differential equations[J]. Proc Amer Math Soc, 1994, 120(3):743-748. [5] SOVRANO E, ZANOLIN F. Ambrosetti-Prodi periodic problem under local coercivity conditions[J]. Adv Nonlinear Stud, 2018, 18(1):169-182. [6] FELTRIN G, ZANOLIN F. An application of coincidence degree theory to cyclic feedback type systems associated with nonlinear differential operators[J]. Topol Methods Nonliear Anal, 2017, 50(2):683-726. [7] FABRY C, MAWHIN J, NKASHMA M N. A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations[J]. Bull Lond Math Soc, 1986, 18(2):173-180. [8] FETRIN G, SOVRANO E, ZANOLIN F. Periodic solutions to parameter-dependent equations with a φ-Lalacian type operator[J]. NoDEA Nonlinear Differential Equations Appl, 2019, 26(5):38. [9] BEREANU C, MAWHIN J. Existence and multiplicity results for periodic solutions of nonlinear difference equations[J]. Difference Equ Appl, 2006, 12(7):677-695. [10] BEREANU C, MAWHIN J. Boundary value problems for second-order nonlinear difference equations with discrete φ-Laplacian and singular φ[J]. Difference Equ Appl, 2008, 14(10/11):1099-1118. [11] KELLEY W G, PETERSON A C. Difference equation an introduction with applications[M]. San Diego: Academic Press, 2001. [12] BEREANU C, MAWHIN J. Existence and multiplicity result for some nonlinear problems with singular φ-Laplacian[J]. Differential Equ, 2007, 243(2):536-557. [13] VILLARI G. Slouzioni periodiche di una classe di equazioni differenziali delterz'ordine quasi lineari[J]. Ann Mat Pura Appl, 1966, 73(1):103-110. [14] 马如云. 非线性常微分方程非局部问题[M]. 北京: 科学出版社, 2004. MA Ruyun. Nonlocal problems of nonlinear ordinary differential equations[M]. Beijing: Science Press, 2004. [15] MANASEVICH R, MAWHIN J. Periodic solutions for nonlinear systems with p-Laplacian-like operators[J]. Differ Equ, 1998, 145(2):367-393. [16] OMARI P. Nonordered lower and upper solutions and solvability of the periodic problem for the Liénard and the Rayleigh equations[J]. Rend Istit Mat Univ Trieste, 1988, 20:54-64. |
[1] | 王晶晶,路艳琼. 一类半正非线性弹性梁方程边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 84-92. |
[2] | 王晶晶,路艳琼. 二阶微分方程Neumann边值问题最优正解的存在性[J]. 《山东大学学报(理学版)》, 2020, 55(3): 113-120. |
[3] | 朱雯雯. 一阶多点边值问题多个解的存在性[J]. 山东大学学报(理学版), 2016, 51(6): 42-48. |
[4] | 朱雯雯. 带参数的一阶周期边值问题正解的存在性及多解性[J]. 山东大学学报(理学版), 2016, 51(12): 36-41. |
[5] | 马陆一. 非线性二阶Neumann边值问题的Ambrosetti-Prodi型结果[J]. 山东大学学报(理学版), 2015, 50(03): 62-66. |
[6] | 孙艳梅1,赵增勤2. 一类二阶奇异脉冲微分方程解的存在性[J]. J4, 2013, 48(6): 91-95. |
[7] | 杨春风. 一类三阶三点边值问题正解的存在性和不存在性[J]. J4, 2012, 47(10): 109-115. |
[8] | 姚庆六 . 非线性变系数二阶Neumann边值问题的正解[J]. J4, 2007, 42(12): 10-14 . |
|