您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (2): 64-74.doi: 10.6040/j.issn.1671-9352.0.2020.351

• • 上一篇    

二阶离散Neumann边值问题的Ambrosetti-Prodi型结果

杨晓梅,路艳琼,王瑞   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 发布日期:2021-01-21
  • 作者简介:杨晓梅(1996— ),女,硕士研究生,研究方向为差分方程及其应用. E-mail:1269469254@qq.com
  • 基金资助:
    国家自然科学基金青年基金资助项目(11901464,11801453);西北师范大学青年教师科研能力提升计划资助项目(NWNU-LKQN2020-20)

Ambrosetti-Prodi type results of the second-order discrete Neumann boundary value problem

YANG Xiao-mei, LU Yan-qiong, WANG Rui   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2021-01-21

摘要: 运用上下解方法和拓扑度理论,研究二阶离散Neumann边值问题{Δ2u(t-1)+g(t,u(t))=s, t∈[1,T]Z,Δu(0)=Δu(T)=0解的个数与参数s的关系,其中s∈R, g:[1,T]Z×R→R连续,[1,T]Z:={1, 2, …, T},存在一个常数 s0∈R,使得当s0时,该问题无解;s=s0时,该问题至少有一个解;s>s0时,该问题至少有两个解。

关键词: Neumann边值问题, Ambrosetti-Prodi问题, 上下解方法, 拓扑度理论

Abstract: By using the method of the upper and lower solutions and topological degree, this paper obtains the relationship between s and the number of solutions for the second-order discrete Neumann boundary value problem{ Δ2u(t-1)+g(t,u(t))=s, t∈[1,T]Z,Δu(0)=Δu(T)=0,where s∈R is a real parameter, g:[1,T]Z×R→R is continuous,[1,TZ:={1, 2, …, T}, there exists s0∈R such that the problem has no solution if s0, at least one solution if s=s0 and at least two solutions if s>s0

Key words: Neumann boundary value problem, Ambrosetti-Prodi problem, lower and upper solutions method, topological degree theory

中图分类号: 

  • O175.7
[1] AMBROSETTI A, PRODI G. On the inversion of some differentiable mappings with singularities between Banach space[J]. Ann Mat Pura Appl, 1972, 93(4):231-246.
[2] 马陆一. 非线性二阶Neumann边值问题的Ambrosetti-Prodi型结果[J]. 山东大学学报(理学版), 2015, 50(3):62-66. MA Luyi. The Ambrosetti-Prodi type results of the nonlinear second-order Neumann boundary value problem[J]. Journal of Shandong University(Natural Science), 2015, 50(3):62-66.
[3] SOVRANO E. Ambrosetti-Prodi type result to a Neumann problem via a topological approach[J]. Discrete Conti Dyn Syst Ser S, 2018, 11(2):345-355.
[4] ERBE L H, WANG H Y. On the existence of positive solutions of ordinary differential equations[J]. Proc Amer Math Soc, 1994, 120(3):743-748.
[5] SOVRANO E, ZANOLIN F. Ambrosetti-Prodi periodic problem under local coercivity conditions[J]. Adv Nonlinear Stud, 2018, 18(1):169-182.
[6] FELTRIN G, ZANOLIN F. An application of coincidence degree theory to cyclic feedback type systems associated with nonlinear differential operators[J]. Topol Methods Nonliear Anal, 2017, 50(2):683-726.
[7] FABRY C, MAWHIN J, NKASHMA M N. A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations[J]. Bull Lond Math Soc, 1986, 18(2):173-180.
[8] FETRIN G, SOVRANO E, ZANOLIN F. Periodic solutions to parameter-dependent equations with a φ-Lalacian type operator[J]. NoDEA Nonlinear Differential Equations Appl, 2019, 26(5):38.
[9] BEREANU C, MAWHIN J. Existence and multiplicity results for periodic solutions of nonlinear difference equations[J]. Difference Equ Appl, 2006, 12(7):677-695.
[10] BEREANU C, MAWHIN J. Boundary value problems for second-order nonlinear difference equations with discrete φ-Laplacian and singular φ[J]. Difference Equ Appl, 2008, 14(10/11):1099-1118.
[11] KELLEY W G, PETERSON A C. Difference equation an introduction with applications[M]. San Diego: Academic Press, 2001.
[12] BEREANU C, MAWHIN J. Existence and multiplicity result for some nonlinear problems with singular φ-Laplacian[J]. Differential Equ, 2007, 243(2):536-557.
[13] VILLARI G. Slouzioni periodiche di una classe di equazioni differenziali delterz'ordine quasi lineari[J]. Ann Mat Pura Appl, 1966, 73(1):103-110.
[14] 马如云. 非线性常微分方程非局部问题[M]. 北京: 科学出版社, 2004. MA Ruyun. Nonlocal problems of nonlinear ordinary differential equations[M]. Beijing: Science Press, 2004.
[15] MANASEVICH R, MAWHIN J. Periodic solutions for nonlinear systems with p-Laplacian-like operators[J]. Differ Equ, 1998, 145(2):367-393.
[16] OMARI P. Nonordered lower and upper solutions and solvability of the periodic problem for the Liénard and the Rayleigh equations[J]. Rend Istit Mat Univ Trieste, 1988, 20:54-64.
[1] 王晶晶,路艳琼. 一类半正非线性弹性梁方程边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 84-92.
[2] 王晶晶,路艳琼. 二阶微分方程Neumann边值问题最优正解的存在性[J]. 《山东大学学报(理学版)》, 2020, 55(3): 113-120.
[3] 朱雯雯. 一阶多点边值问题多个解的存在性[J]. 山东大学学报(理学版), 2016, 51(6): 42-48.
[4] 朱雯雯. 带参数的一阶周期边值问题正解的存在性及多解性[J]. 山东大学学报(理学版), 2016, 51(12): 36-41.
[5] 马陆一. 非线性二阶Neumann边值问题的Ambrosetti-Prodi型结果[J]. 山东大学学报(理学版), 2015, 50(03): 62-66.
[6] 孙艳梅1,赵增勤2. 一类二阶奇异脉冲微分方程解的存在性[J]. J4, 2013, 48(6): 91-95.
[7] 杨春风. 一类三阶三点边值问题正解的存在性和不存在性[J]. J4, 2012, 47(10): 109-115.
[8] 姚庆六 . 非线性变系数二阶Neumann边值问题的正解[J]. J4, 2007, 42(12): 10-14 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!