《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (6): 74-80.doi: 10.6040/j.issn.1671-9352.0.2020.539
• • 上一篇
王凤霞,熊向团*
WANG Feng-xia, XIONG Xiang-tuan*
摘要: 在非齐次热方程侧边值问题中,假设热源很大程度上依赖于空间和时间,不能被忽略。因为问题的解(如果存在的话)不连续依赖于数据,所以这是一个典型的不适定问题,而且绝大多数文献仅研究关于齐次的侧边值问题。通过采用Fourier变换和拟边值正则化方法对非齐次侧边值问题进行研究,得到稳定的近似解,并给出在先验参数选取和后验参数选取下稳定性的误差估计。
中图分类号:
[1] MOURA NETO F D, DA SILVA NETO A J. An introduction to inverse problems with applications[M]. Berlin: Springer, 2013. [2] XIONG Xiangtuan, FU Chuli, LI Hongfang. Fourier regularization method of a sideways heat equation for determining surface heat flux[J]. Journal of Mathematical Analysis and Applications, 2006, 317(1):331-348. [3] ELDEN L, BERNTSSON F, REGINSKA T. Wavelet and Fourier methods for solving the sideways heat equation[J]. SIAM Journal on Scientific Computing, 2000, 21(6):2187-2205. [4] REGINSKA T, ELDEN L. Stability and convergence of a wavelet-Galerkin method for the sideways heat equation[J]. Journal of Inverse and Ill-posed Problems, 2000, 8(1):31-49. [5] REGINSKA T. Sideways heat equation and wavelets[J]. Journal of Computational & Applied Mathematics, 1995, 63(1):209-214. [6] QIU Chunyu, FU Chuli, ZHU Youbin. Wavelets and regularization of the sideways heat equation[J]. Computers & Mathematics with Applications, 2003, 46(5):821-829. [7] NGUYEN A T, DONAL O, BALEANU D, et al. A filter method for inverse nonlinear sideways heat equation[J]. Advances in Difference Equations, 2020, 2020(19):451-466. [8] SEIDMAN T I, ELDEN L. An optimal filtering method for the sideways heat equation[J]. Inverse Problems, 1989, 6(4):681-696. [9] XIONG Xiangtuan, FU Chuli, LI Hongfang. Central difference method of a non-standard inverse heat conduction problem for determining surface heat flux from interior observations[J]. Applied Mathematics & Computation, 2006, 173(2):1265-1287. [10] ELDEN L. Numerical solution of the sideways heat equation by difference approximation in time[J]. Inverse Problems, 1999, 11(4):913. [11] PAKANEN, JOUKO E. A sequential one-dimensional solution for the sideways heat equation in a semi-infinite finite and multilayer slab[J]. Numerical Heat Transfer Fundamentals, 2012, 61(6):471-491. [12] NGUYEN H T, LUU V C H. Two new regularization methods for solving sideways heat equation[J]. Journal of Inequalities & Applications, 2015, 2015(1):1-17. |
[1] | 戚斌,程浩. Neumann边界条件分数阶扩散波方程的源项辨识[J]. 《山东大学学报(理学版)》, 2021, 56(6): 64-73. |
[2] | 杨彩杰,孙同军. 抛物型最优控制问题的Crank-Nicolson差分方法[J]. 《山东大学学报(理学版)》, 2020, 55(6): 115-121. |
[3] | 郑瑞瑞,孙同军. 一类捕食与被捕食模型最优控制问题的有限元方法的先验误差估计[J]. 《山东大学学报(理学版)》, 2020, 55(1): 23-32. |
[4] | 陈雅文,熊向团. 抛物方程非特征柯西问题的分数次Tikhonov方法[J]. 《山东大学学报(理学版)》, 2019, 54(12): 120-126. |
[5] | 丁凤霞,程浩. 椭圆方程柯西问题磨光正则化参数的后验选取[J]. 山东大学学报(理学版), 2018, 53(2): 18-24. |
[6] | 于金彪,任永强,曹伟东,鲁统超,程爱杰,戴涛. 可压多孔介质流的扩展混合元解法[J]. 山东大学学报(理学版), 2017, 52(8): 25-34. |
[7] | 史艳华1,石东洋2*. 伪双曲方程类Wilson非协调元逼近[J]. J4, 2013, 48(4): 77-84. |
[8] | 吴志勤1,石东伟2. 带弱奇异核非线性积分微分方程的收敛性分析[J]. J4, 2012, 47(8): 60-63. |
[9] | 李娜,高夫征*,张天德. Sobolev方程的扩展混合体积元方法[J]. J4, 2012, 47(6): 34-39. |
[10] | 于金彪1,2,席开华3*,戴涛2,鲁统超3,杨耀忠2,任永强3,程爱杰3. 两相多组分流有限元方法的收敛性[J]. J4, 2012, 47(2): 19-25. |
[11] | 周家全,孙应德,张永胜. Burgers方程的非协调特征有限元方法[J]. J4, 2012, 47(12): 103-108. |
[12] | 乔保民,梁洪亮. 一类非线性广义神经传播方程Adini元的超收敛分析[J]. J4, 2011, 46(8): 42-46. |
[13] | 张路寅,张玉海,钱坤明. 关于不适定问题的迭代Tikhonov正则化方法[J]. J4, 2011, 46(4): 29-33. |
[14] | 郑瑞瑞,孙同军. 一类线性Sobolev方程的迎风混合元方法[J]. J4, 2011, 46(4): 23-28. |
[15] | 马宁. 含弥散项渗流问题的正交配置法[J]. J4, 2011, 46(2): 78-81. |
|