您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (6): 74-80.doi: 10.6040/j.issn.1671-9352.0.2020.539

• • 上一篇    

非齐次热方程侧边值问题的拟边值正则化方法

王凤霞,熊向团*   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 发布日期:2021-06-03
  • 作者简介:王凤霞(1996— ),女,硕士研究生,研究方向为微分方程数值解. E-mail:18309465226@163.com*通信作者简介:熊向团(1977— ),男,教授,博士生导师,研究方向为微分方程数值解. E-mail:xiongxt@fudan.edu.com
  • 基金资助:
    国家自然科学基金资助项目(11661072);西北师范大学科学计算创新团队资助项目(NWNU-LKQN-17-5)

Quasi-boundary value regularization method for inhomogeneous sideways heat equation

WANG Feng-xia, XIONG Xiang-tuan*   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2021-06-03

摘要: 在非齐次热方程侧边值问题中,假设热源很大程度上依赖于空间和时间,不能被忽略。因为问题的解(如果存在的话)不连续依赖于数据,所以这是一个典型的不适定问题,而且绝大多数文献仅研究关于齐次的侧边值问题。通过采用Fourier变换和拟边值正则化方法对非齐次侧边值问题进行研究,得到稳定的近似解,并给出在先验参数选取和后验参数选取下稳定性的误差估计。

关键词: 非齐次热方程侧边值问题, 不适定问题, 拟边值方法, 误差估计

Abstract: In the inhomogeneous sideways heat equation, it is assumed that the heat source is largely dependent on space and time and cannot be ignored. Since the solution of the problem(if it exists)is discontinuously dependent on the data, this is a typical ill-posed problem, and most of the literature only deals with homogeneous sideways heat equation. By using Fourier transform and quasi-boundary value regularization method, the inhomogeneous sideways heat equation is studied, and the stable approximate solution is obtained. The error estimate of the stability is given under the prior parameter selection and the posterior parameter selection rule.

Key words: inhomogeneous sideways heat equation, ill-posed problems, quasi-boundary value method, error estimation

中图分类号: 

  • O241.1
[1] MOURA NETO F D, DA SILVA NETO A J. An introduction to inverse problems with applications[M]. Berlin: Springer, 2013.
[2] XIONG Xiangtuan, FU Chuli, LI Hongfang. Fourier regularization method of a sideways heat equation for determining surface heat flux[J]. Journal of Mathematical Analysis and Applications, 2006, 317(1):331-348.
[3] ELDEN L, BERNTSSON F, REGINSKA T. Wavelet and Fourier methods for solving the sideways heat equation[J]. SIAM Journal on Scientific Computing, 2000, 21(6):2187-2205.
[4] REGINSKA T, ELDEN L. Stability and convergence of a wavelet-Galerkin method for the sideways heat equation[J]. Journal of Inverse and Ill-posed Problems, 2000, 8(1):31-49.
[5] REGINSKA T. Sideways heat equation and wavelets[J]. Journal of Computational & Applied Mathematics, 1995, 63(1):209-214.
[6] QIU Chunyu, FU Chuli, ZHU Youbin. Wavelets and regularization of the sideways heat equation[J]. Computers & Mathematics with Applications, 2003, 46(5):821-829.
[7] NGUYEN A T, DONAL O, BALEANU D, et al. A filter method for inverse nonlinear sideways heat equation[J]. Advances in Difference Equations, 2020, 2020(19):451-466.
[8] SEIDMAN T I, ELDEN L. An optimal filtering method for the sideways heat equation[J]. Inverse Problems, 1989, 6(4):681-696.
[9] XIONG Xiangtuan, FU Chuli, LI Hongfang. Central difference method of a non-standard inverse heat conduction problem for determining surface heat flux from interior observations[J]. Applied Mathematics & Computation, 2006, 173(2):1265-1287.
[10] ELDEN L. Numerical solution of the sideways heat equation by difference approximation in time[J]. Inverse Problems, 1999, 11(4):913.
[11] PAKANEN, JOUKO E. A sequential one-dimensional solution for the sideways heat equation in a semi-infinite finite and multilayer slab[J]. Numerical Heat Transfer Fundamentals, 2012, 61(6):471-491.
[12] NGUYEN H T, LUU V C H. Two new regularization methods for solving sideways heat equation[J]. Journal of Inequalities & Applications, 2015, 2015(1):1-17.
[1] 戚斌,程浩. Neumann边界条件分数阶扩散波方程的源项辨识[J]. 《山东大学学报(理学版)》, 2021, 56(6): 64-73.
[2] 杨彩杰,孙同军. 抛物型最优控制问题的Crank-Nicolson差分方法[J]. 《山东大学学报(理学版)》, 2020, 55(6): 115-121.
[3] 郑瑞瑞,孙同军. 一类捕食与被捕食模型最优控制问题的有限元方法的先验误差估计[J]. 《山东大学学报(理学版)》, 2020, 55(1): 23-32.
[4] 陈雅文,熊向团. 抛物方程非特征柯西问题的分数次Tikhonov方法[J]. 《山东大学学报(理学版)》, 2019, 54(12): 120-126.
[5] 丁凤霞,程浩. 椭圆方程柯西问题磨光正则化参数的后验选取[J]. 山东大学学报(理学版), 2018, 53(2): 18-24.
[6] 于金彪,任永强,曹伟东,鲁统超,程爱杰,戴涛. 可压多孔介质流的扩展混合元解法[J]. 山东大学学报(理学版), 2017, 52(8): 25-34.
[7] 史艳华1,石东洋2*. 伪双曲方程类Wilson非协调元逼近[J]. J4, 2013, 48(4): 77-84.
[8] 吴志勤1,石东伟2. 带弱奇异核非线性积分微分方程的收敛性分析[J]. J4, 2012, 47(8): 60-63.
[9] 李娜,高夫征*,张天德. Sobolev方程的扩展混合体积元方法[J]. J4, 2012, 47(6): 34-39.
[10] 于金彪1,2,席开华3*,戴涛2,鲁统超3,杨耀忠2,任永强3,程爱杰3. 两相多组分流有限元方法的收敛性[J]. J4, 2012, 47(2): 19-25.
[11] 周家全,孙应德,张永胜. Burgers方程的非协调特征有限元方法[J]. J4, 2012, 47(12): 103-108.
[12] 乔保民,梁洪亮. 一类非线性广义神经传播方程Adini元的超收敛分析[J]. J4, 2011, 46(8): 42-46.
[13] 张路寅,张玉海,钱坤明. 关于不适定问题的迭代Tikhonov正则化方法[J]. J4, 2011, 46(4): 29-33.
[14] 郑瑞瑞,孙同军. 一类线性Sobolev方程的迎风混合元方法[J]. J4, 2011, 46(4): 23-28.
[15] 马宁. 含弥散项渗流问题的正交配置法[J]. J4, 2011, 46(2): 78-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!