您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (6): 64-73.doi: 10.6040/j.issn.1671-9352.0.2020.582

• • 上一篇    

Neumann边界条件分数阶扩散波方程的源项辨识

戚斌,程浩*   

  1. 江南大学理学院, 江苏 无锡 214122
  • 发布日期:2021-06-03
  • 作者简介:戚斌(1995— ),男,硕士研究生,研究方向为数学物理方程反问题. E-mail:mailbox957bin@163.com*通信作者简介:程浩(1983— ),男,博士,副教授,研究方向为数学物理方程反问题. E-mail:chenghao@jiangnan.edu.cn
  • 基金资助:
    江苏省研究生科研与实践创新计划资助项目(KYCX20_1922);国家自然科学基金资助项目(61772013);江苏省自然科学基金资助项目(BK20190578)

Identification of source term for fractional diffusion-wave equation with Neumann boundary conditions

QI Bin, CHENG Hao*   

  1. School of Science, Jiangnan University, Wuxi 214122, Jiangsu, China
  • Published:2021-06-03

摘要: 对Neumann边界条件时间分数阶扩散波方程的源项辨识问题进行研究,构造一种改进的迭代正则化方法,得到源项辨识问题的正则化解,给出先验和后验参数选取规则下源项的正则化解和精确解之间的误差估计。数值算例验证了迭代正则化方法的有效性。

关键词: 分数阶扩散波方程, 源项辨识, 迭代正则化, 误差估计

Abstract: The source term identification of the time-fractional diffusion-wave equation with Neumann boundary conditions is studied. An improved iterative regularization method is constructed to calculate the regularization solution of the source term. The error estimates between the regularization solution and the exact solution are given under the prior and the posterior regularization parameter choice rules. Numerical examples verify the effectiveness of the iterative regularization method.

Key words: fractional diffusion-wave equation, source term identification, iterative regularization, error estimate

中图分类号: 

  • O241.82
[1] SUN Hongguang, CHEN Wen, LI Changping, et al. Fractional differential models for anomalous diffusion[J]. Physica A, 2010, 389(14):2719-2724.
[2] LIU F W, MEERSCHAERT M M, MCGOUGH R J, et al. Numerical methods for solving the multi-term time-fractional wave-diffusion equation[J]. Fractional Calculus and Applied Analysis, 2013, 16(1):9-25.
[3] MAINARDI F. The fundamental solutions for the fractional diffusion-wave equation[J]. Applied Mathematics Letters, 1996, 9(6):23-28.
[4] DU Rui, CAO Wanrong, SUN Zhizhong. A compact difference scheme for the fractional diffusion-wave equation[J]. Applied Mathematical Modelling, 2010, 34(10):2998-3007.
[5] HU G H, LIU Y K, YAMAMOTO M. Inverse moving source problem for fractional diffusion(-wave)equations: determination of orbits[J]. Inverse Problems and Related Topics, 2020, 310:81-100.
[6] SAKAMOTO K, YAMAMOTO M. Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems[J]. Journal of Mathematical Analysis and Applications, 2011, 382(1):426-447.
[7] JIANG Suzhen, LIAO Kaifang, WEI Ting. Inversion of the initial value for a time-fractional diffusion-wave equation by boundary data[J]. Computational Methods in Applied Mathematics, 2020, 20(1):109-120.
[8] YANG Fan, PU Qu, LI Xiaoxiao, et al. The truncation regularization method for identifying the initial value on non-homogeneous time-fractional diffusion-wave equations[J]. Mathematics, 2019, 7(11):1007.
[9] LI Gongsheng, ZHANG Dali, JIA Xianzheng, et al. Simultaneous inversion for the space-dependent diffusion coefficient and the fractional order in the time-fractional diffusion equation[J]. Inverse Problems, 2013, 29(6):65014-65049.
[10] GONG Xuhong, WEI Ting. Reconstruction of a time-dependent source term in a time-fractional diffusion-wave equation[J]. Inverse Problems in Science and Engineering, 2019, 27(11):1577-1594.
[11] YAN Xiongbin, WEi Ting. Determine a space-dependent source term in a time fractional diffusion-wave equation[J]. Acta Applicandae Mathematicae, 2020, 165(1):163-181.
[12] YANG Fan, WANG Ni, LI Xiaoxiao. Landweber iterative method for an inverse source problem of time-fractional diffusion-wave equation on spherically symmetric domain[J]. Journal of Applied Analysis and Computation, 2020, 10(2):514-529.
[13] LONG L D, LUC N H, ZHOU Y, et al. Identification of source term for the time-fractional diffusion-wave equation by fractional Tikhonov method[J]. Mathematics, 2019, 7(10):934.
[14] WANG Jungang, Ran Yuhong. An iterative method for an inverse source problem of time-fractional diffusion equation[J]. Inverse Problems in Scienceand Engineering, 2018, 26(10):1509-1521.
[15] PODLUBNY I. Fractional differential equations[M]. San Diego: Academic Press, 1999.
[16] DENG Youjun, LIU Zhenhai. Iteration methods on sideways parabolic equations[J]. Inverse Problems, 2009, 25(9):095004.
[17] 李晓婷.时间分数阶扩散波方程的反源项问题[D]. 兰州:兰州大学,2017. LI Xiaoting. Inverse source problem for a time fractional diffusion-wave equation[D]. Lanzhou: Lanzhou University, 2017.
[1] 杨彩杰,孙同军. 抛物型最优控制问题的Crank-Nicolson差分方法[J]. 《山东大学学报(理学版)》, 2020, 55(6): 115-121.
[2] 郑瑞瑞,孙同军. 一类捕食与被捕食模型最优控制问题的有限元方法的先验误差估计[J]. 《山东大学学报(理学版)》, 2020, 55(1): 23-32.
[3] 陈雅文,熊向团. 抛物方程非特征柯西问题的分数次Tikhonov方法[J]. 《山东大学学报(理学版)》, 2019, 54(12): 120-126.
[4] 丁凤霞,程浩. 椭圆方程柯西问题磨光正则化参数的后验选取[J]. 山东大学学报(理学版), 2018, 53(2): 18-24.
[5] 于金彪,任永强,曹伟东,鲁统超,程爱杰,戴涛. 可压多孔介质流的扩展混合元解法[J]. 山东大学学报(理学版), 2017, 52(8): 25-34.
[6] 史艳华1,石东洋2*. 伪双曲方程类Wilson非协调元逼近[J]. J4, 2013, 48(4): 77-84.
[7] 吴志勤1,石东伟2. 带弱奇异核非线性积分微分方程的收敛性分析[J]. J4, 2012, 47(8): 60-63.
[8] 李娜,高夫征*,张天德. Sobolev方程的扩展混合体积元方法[J]. J4, 2012, 47(6): 34-39.
[9] 于金彪1,2,席开华3*,戴涛2,鲁统超3,杨耀忠2,任永强3,程爱杰3. 两相多组分流有限元方法的收敛性[J]. J4, 2012, 47(2): 19-25.
[10] 周家全,孙应德,张永胜. Burgers方程的非协调特征有限元方法[J]. J4, 2012, 47(12): 103-108.
[11] 乔保民,梁洪亮. 一类非线性广义神经传播方程Adini元的超收敛分析[J]. J4, 2011, 46(8): 42-46.
[12] 郑瑞瑞,孙同军. 一类线性Sobolev方程的迎风混合元方法[J]. J4, 2011, 46(4): 23-28.
[13] 马宁. 含弥散项渗流问题的正交配置法[J]. J4, 2011, 46(2): 78-81.
[14] 周建伟1,羊丹平2*. 二维区域Legendre-Galerkin谱方法的后验误差估计[J]. J4, 2011, 46(11): 122-126.
[15] 陆瑶1,李德生2,杨洋1. 非线性SchrÖdinger方程的Fourier谱逼近[J]. J4, 2011, 46(1): 119-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!