您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (10): 43-53.doi: 10.6040/j.issn.1671-9352.0.2022.308

•   • 上一篇    下一篇

含有猎物避难所和恐惧效应的反应扩散捕食者-食饵模型的动力学

曹倩1(),李艳玲2,*(),单炜华1   

  1. 1. 长安大学理学院, 陕西 西安 710064
    2. 陕西师范大学数学与统计学院, 陕西 西安 710119
  • 收稿日期:2022-05-30 出版日期:2023-10-20 发布日期:2023-10-17
  • 通讯作者: 李艳玲 E-mail:mathcq19@chd.edu.cn;yanlingl@snnu.edu.cn
  • 作者简介:曹倩(1989—),女,讲师,博士研究生,研究方向为反应扩散方程和生物数学. E-mail: mathcq19@chd.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(12101075);国家自然科学基金资助项目(61872227);陕西省自然科学基础研究计划资助项目(2021JQ-217);陕西省自然科学基础研究计划资助项目(2022JQ-054);中央高校基本科研业务费专项资金资助项目(300102122114)

Dynamics of a reaction-diffusion predator-prey model incorporating prey refuge and fear effect

Qian CAO1(),Yanling LI2,*(),Weihua SHAN1   

  1. 1. School of Science, Chang'an University Xi'an 710064, Shaanxi, China
    2. School of Mathematics and Statistics, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
  • Received:2022-05-30 Online:2023-10-20 Published:2023-10-17
  • Contact: Yanling LI E-mail:mathcq19@chd.edu.cn;yanlingl@snnu.edu.cn

摘要:

针对具有猎物避难所和恐惧效应的反应扩散捕食者-食饵系统, 研究系统正常数解的图灵不稳和系统解的先验估计, 并证明在一定的参数条件下系统非常数正稳态解的不存在性。此外, 以捕食者的扩散系数为分歧参数, 构建分歧解的全局结构, 得到当捕食者的扩散系数大于某个临界值时, 分歧解可以延拓到无穷。最后, 通过数值模拟验证并补充理论结果。

关键词: 图灵不稳, 分歧理论, 猎物避难所, 恐惧效应, 反应扩散捕食者-食饵模型

Abstract:

For a reaction-diffusion predator-prey system with prey refuge and fear effect, the Turing instability of the positive constant solution for the system and a priori estimates of solutions for the system are investigated. It is proved that there is no nonconstant positive steady-state solution for the system under certain parameter conditions. Moreover, taking the diffusion coefficient of the predator as the bifurcation parameter, the global structure of the bifurcation solution is constructed. It is found that the bifurcation solution can be extended to infinity when the diffusion coefficient of predator is greater than some critical value. Finally, by numerical simulations, the theoretical results are verified and supplemented.

Key words: Turing instability, bifurcation theory, prey refuge, fear effect, reaction-diffusion predator-prey model

中图分类号: 

  • O175

图1

当$d_{2}=1<\tilde{d}_{2}$时系统(1)产生的时空模式"

图2

当$d_{2}=500>\tilde{d}_{2}$时系统(1)产生的时空模式"

图3

当d1=0.1时系统(1)产生的时空模式"

图4

当m=0时系统(1)产生的时空模式"

图5

当k=0、d1=0.01和d2=500时系统(1)产生的时空模式"

1 TAYLOR R J . Predation[M]. New York: Chapman and Hall, 1984.
2 EDUARDO G O , RODRIGO R J . Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability[J]. Ecological Modelling, 2003, 166 (1/2): 135- 146.
3 MUKHERJEE D , MAJI C . Bifurcation analysis of a Holling type Ⅱ predator-prey model with refuge[J]. Chinese Journal of Physics, 2020, 65, 153- 162.
doi: 10.1016/j.cjph.2020.02.012
4 MUKHERJEE D . The effect of refuge and immigration in a predator-prey system in the presence of a competitor for the prey[J]. Nonlinear Analysis: Real World Applications, 2016, 31, 277- 287.
doi: 10.1016/j.nonrwa.2016.02.004
5 CHEN Fengde , CHEN Liujuan , XIE Xiangdong . On a Leslie-Gower predator-prey model incorporating a prey refuge[J]. Nonlinear Analysis: Real World Applications, 2009, 10 (5): 2905- 2908.
doi: 10.1016/j.nonrwa.2008.09.009
6 CHEN Fengde , MA Zhaozhi , ZHANG Huiying . Global asymptotical stability of the positive equilibrium of the Lotka-Volterra prey-predator model incorporating a constant number of prey refuges[J]. Nonlinear Analysis: Real World Applications, 2012, 13 (6): 2790- 2793.
doi: 10.1016/j.nonrwa.2012.04.006
7 SLIMANI S , DE FITTE P R , BOUSSAADA I . Dynamic of a prey-predator system with modified Leslie-Gower and Holling type Ⅱ schemes incorporating a prey refuge[J]. Discrete and Continuous Dynamical Systems: B, 2019, 24 (9): 5003- 5039.
8 GUAN Xiaona , WANG Weiming , CAI Yongli . Spatiotemporal dynamics of a Leslie-Gower predator-prey model incorporating a prey refuge[J]. Nonlinear Analysis: Real World Applications, 2011, 12 (4): 2385- 2395.
doi: 10.1016/j.nonrwa.2011.02.011
9 CRESSWELL W . Predation in bird populations[J]. Journal of Ornithology, 2011, 152 (1): 251- 263.
10 LIMA S L . Nonlethal effects in the ecology of predator-prey interactions[J]. Bioscience, 1998, 48 (1): 25- 34.
doi: 10.2307/1313225
11 LIMA S L . Predators and the breeding bird: behavioral and reproductive flexibility under the risk of predation[J]. Biological Reviews, 2009, 84 (3): 485- 513.
doi: 10.1111/j.1469-185X.2009.00085.x
12 CREEL S , CHRISTIANSON D . Relationships between direct predation and risk effects[J]. Trends in Ecology and Evolution, 2008, 23 (4): 194- 201.
doi: 10.1016/j.tree.2007.12.004
13 ZANETTE L Y , WHITE A F , ALLEN M C , et al. Perceived predation risk reduces the number of offspring songbirds produce per year[J]. Science, 2011, 334 (6061): 1398- 1401.
doi: 10.1126/science.1210908
14 WANG Xiaoying , ZANETTE L , ZOU Xingfu . Modelling the fear effect in predator-prey interactions[J]. Journal of Mathematical Biology, 2016, 73 (5): 1179- 1204.
doi: 10.1007/s00285-016-0989-1
15 DAS M , SAMANTA G P . A delayed fractional order food chain model with fear effect and prey refuge[J]. Mathematics and Computers in Simulation, 2020, 178, 218- 245.
doi: 10.1016/j.matcom.2020.06.015
16 MONDAL S , SAMANTA G P , NIETO J J . Dynamics of a predator-prey population in the presence of resource subsidy under the influence of nonlinear prey refuge and fear effect[J]. Complexity, 2021, 2021, 1- 38.
17 QI Haokun , MENG Xinzhu , HAYAT T , et al. Bifurcation dynamics of a reaction-diffusion predator-prey model with fear effect in a predator-poisoned environment[J]. Mathematical Methods in the Applied Sciences, 2022, 45 (10): 6217- 6254.
doi: 10.1002/mma.8167
18 CAI Yongli , GUI Zhanji , ZHANG Xuebing , et al. Bifurcations and pattern formation in a predator-prey model[J]. International Journal of Bifurcation and Chaos, 2018, 28 (11): 1- 17.
19 CASTEN R G , HOLLAND C J . Stability properties of solutions to systems of reaction-diffusion equations[J]. SIAM Journal on Applied Mathematics, 1977, 33 (2): 353- 364.
doi: 10.1137/0133023
20 TURING A M . The chemical basis of morphogenesis[J]. Philosophical Transactions of the Royal Society of London(Series B), 1952, 237 (641): 37- 72.
21 LOU Yuan , NI Weiming . Diffusion, self-diffusion and cross-diffusion[J]. Journal of Differential Equations, 1996, 131 (1): 79- 131.
doi: 10.1006/jdeq.1996.0157
22 CRANDALL M G , RABINOWITZ P H . Bifurcation from simple eigenvalues[J]. Journal of Functional Analysis, 1971, 8 (2): 321- 340.
doi: 10.1016/0022-1236(71)90015-2
23 JANG J , NI Weiming , TANG Moxun . Global bifurcation and structure of Turing patterns in the 1-D Lengyel-Epstein model[J]. Journal of Dynamics and Differential Equations, 2004, 16 (2): 297- 320.
doi: 10.1007/s10884-004-2782-x
24 RABINOWITZ P H . Some global results for nonlinear eigenvalue problems[J]. Journal of Functional Analysis, 1971, 7 (3): 487- 513.
doi: 10.1016/0022-1236(71)90030-9
25 NISHIURA Y . Global structure of bifurcating solutions of some reaction-diffusion systems[J]. SIAM Journal on Mathematical Analysis, 1982, 13 (4): 555- 593.
doi: 10.1137/0513037
26 TAKAGI I . Point-condensation for a reaction-diffusion system[J]. Journal of Differential Equations, 1986, 61 (2): 208- 249.
doi: 10.1016/0022-0396(86)90119-1
[1] 杨丽娟. 一类带参数四阶边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(9): 35-41.
[2] 阳忠亮, 郭改慧. 一类带有B-D功能反应的捕食-食饵模型的分支分析[J]. 《山东大学学报(理学版)》, 2020, 55(7): 9-15.
[3] 李晓燕,徐嫚. 二阶脉冲微分方程Dirichlet问题非平凡解的存在性及多解性[J]. 山东大学学报(理学版), 2016, 51(12): 29-35.
[4] 李海侠. 带有保护区域的加法Allee效应捕食-食饵模型的共存解[J]. 山东大学学报(理学版), 2015, 50(09): 88-94.
[5] 张露,马如云. 渐近线性二阶半正离散边值问题正解的分歧结构[J]. 山东大学学报(理学版), 2014, 49(03): 79-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 罗斯特,卢丽倩,崔若飞,周伟伟,李增勇*. Monte-Carlo仿真酒精特征波长光子在皮肤中的传输规律及光纤探头设计[J]. J4, 2013, 48(1): 46 -50 .
[2] 田学刚, 王少英. 算子方程AXB=C的解[J]. J4, 2010, 45(6): 74 -80 .
[3] 霍玉洪,季全宝. 一类生物细胞系统钙离子振荡行为的同步研究[J]. J4, 2010, 45(6): 105 -110 .
[4] 唐风琴1,白建明2. 一类带有广义负上限相依索赔额的风险过程大偏差[J]. J4, 2013, 48(1): 100 -106 .
[5] 程智1,2,孙翠芳2,王宁1,杜先能1. 关于Zn的拉回及其性质[J]. J4, 2013, 48(2): 15 -19 .
[6] 汤晓宏1,胡文效2*,魏彦锋2,蒋锡龙2,张晶莹2,. 葡萄酒野生酿酒酵母的筛选及其生物特性的研究[J]. 山东大学学报(理学版), 2014, 49(03): 12 -17 .
[7] 廖明哲. 哥德巴赫的两个猜想[J]. J4, 2013, 48(2): 1 -14 .
[8] 赵同欣1,刘林德1*,张莉1,潘成臣2,贾兴军1. 紫藤传粉昆虫与花粉多型性研究[J]. 山东大学学报(理学版), 2014, 49(03): 1 -5 .
[9] 王开荣,高佩婷. 建立在DY法上的两类混合共轭梯度法[J]. 山东大学学报(理学版), 2016, 51(6): 16 -23 .
[10] 杨军. 金属基纳米材料表征和纳米结构调控[J]. 山东大学学报(理学版), 2013, 48(1): 1 -22 .