《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (10): 43-53.doi: 10.6040/j.issn.1671-9352.0.2022.308
Qian CAO1(),Yanling LI2,*(),Weihua SHAN1
摘要:
针对具有猎物避难所和恐惧效应的反应扩散捕食者-食饵系统, 研究系统正常数解的图灵不稳和系统解的先验估计, 并证明在一定的参数条件下系统非常数正稳态解的不存在性。此外, 以捕食者的扩散系数为分歧参数, 构建分歧解的全局结构, 得到当捕食者的扩散系数大于某个临界值时, 分歧解可以延拓到无穷。最后, 通过数值模拟验证并补充理论结果。
中图分类号:
1 | TAYLOR R J . Predation[M]. New York: Chapman and Hall, 1984. |
2 | EDUARDO G O , RODRIGO R J . Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability[J]. Ecological Modelling, 2003, 166 (1/2): 135- 146. |
3 |
MUKHERJEE D , MAJI C . Bifurcation analysis of a Holling type Ⅱ predator-prey model with refuge[J]. Chinese Journal of Physics, 2020, 65, 153- 162.
doi: 10.1016/j.cjph.2020.02.012 |
4 |
MUKHERJEE D . The effect of refuge and immigration in a predator-prey system in the presence of a competitor for the prey[J]. Nonlinear Analysis: Real World Applications, 2016, 31, 277- 287.
doi: 10.1016/j.nonrwa.2016.02.004 |
5 |
CHEN Fengde , CHEN Liujuan , XIE Xiangdong . On a Leslie-Gower predator-prey model incorporating a prey refuge[J]. Nonlinear Analysis: Real World Applications, 2009, 10 (5): 2905- 2908.
doi: 10.1016/j.nonrwa.2008.09.009 |
6 |
CHEN Fengde , MA Zhaozhi , ZHANG Huiying . Global asymptotical stability of the positive equilibrium of the Lotka-Volterra prey-predator model incorporating a constant number of prey refuges[J]. Nonlinear Analysis: Real World Applications, 2012, 13 (6): 2790- 2793.
doi: 10.1016/j.nonrwa.2012.04.006 |
7 | SLIMANI S , DE FITTE P R , BOUSSAADA I . Dynamic of a prey-predator system with modified Leslie-Gower and Holling type Ⅱ schemes incorporating a prey refuge[J]. Discrete and Continuous Dynamical Systems: B, 2019, 24 (9): 5003- 5039. |
8 |
GUAN Xiaona , WANG Weiming , CAI Yongli . Spatiotemporal dynamics of a Leslie-Gower predator-prey model incorporating a prey refuge[J]. Nonlinear Analysis: Real World Applications, 2011, 12 (4): 2385- 2395.
doi: 10.1016/j.nonrwa.2011.02.011 |
9 | CRESSWELL W . Predation in bird populations[J]. Journal of Ornithology, 2011, 152 (1): 251- 263. |
10 |
LIMA S L . Nonlethal effects in the ecology of predator-prey interactions[J]. Bioscience, 1998, 48 (1): 25- 34.
doi: 10.2307/1313225 |
11 |
LIMA S L . Predators and the breeding bird: behavioral and reproductive flexibility under the risk of predation[J]. Biological Reviews, 2009, 84 (3): 485- 513.
doi: 10.1111/j.1469-185X.2009.00085.x |
12 |
CREEL S , CHRISTIANSON D . Relationships between direct predation and risk effects[J]. Trends in Ecology and Evolution, 2008, 23 (4): 194- 201.
doi: 10.1016/j.tree.2007.12.004 |
13 |
ZANETTE L Y , WHITE A F , ALLEN M C , et al. Perceived predation risk reduces the number of offspring songbirds produce per year[J]. Science, 2011, 334 (6061): 1398- 1401.
doi: 10.1126/science.1210908 |
14 |
WANG Xiaoying , ZANETTE L , ZOU Xingfu . Modelling the fear effect in predator-prey interactions[J]. Journal of Mathematical Biology, 2016, 73 (5): 1179- 1204.
doi: 10.1007/s00285-016-0989-1 |
15 |
DAS M , SAMANTA G P . A delayed fractional order food chain model with fear effect and prey refuge[J]. Mathematics and Computers in Simulation, 2020, 178, 218- 245.
doi: 10.1016/j.matcom.2020.06.015 |
16 | MONDAL S , SAMANTA G P , NIETO J J . Dynamics of a predator-prey population in the presence of resource subsidy under the influence of nonlinear prey refuge and fear effect[J]. Complexity, 2021, 2021, 1- 38. |
17 |
QI Haokun , MENG Xinzhu , HAYAT T , et al. Bifurcation dynamics of a reaction-diffusion predator-prey model with fear effect in a predator-poisoned environment[J]. Mathematical Methods in the Applied Sciences, 2022, 45 (10): 6217- 6254.
doi: 10.1002/mma.8167 |
18 | CAI Yongli , GUI Zhanji , ZHANG Xuebing , et al. Bifurcations and pattern formation in a predator-prey model[J]. International Journal of Bifurcation and Chaos, 2018, 28 (11): 1- 17. |
19 |
CASTEN R G , HOLLAND C J . Stability properties of solutions to systems of reaction-diffusion equations[J]. SIAM Journal on Applied Mathematics, 1977, 33 (2): 353- 364.
doi: 10.1137/0133023 |
20 | TURING A M . The chemical basis of morphogenesis[J]. Philosophical Transactions of the Royal Society of London(Series B), 1952, 237 (641): 37- 72. |
21 |
LOU Yuan , NI Weiming . Diffusion, self-diffusion and cross-diffusion[J]. Journal of Differential Equations, 1996, 131 (1): 79- 131.
doi: 10.1006/jdeq.1996.0157 |
22 |
CRANDALL M G , RABINOWITZ P H . Bifurcation from simple eigenvalues[J]. Journal of Functional Analysis, 1971, 8 (2): 321- 340.
doi: 10.1016/0022-1236(71)90015-2 |
23 |
JANG J , NI Weiming , TANG Moxun . Global bifurcation and structure of Turing patterns in the 1-D Lengyel-Epstein model[J]. Journal of Dynamics and Differential Equations, 2004, 16 (2): 297- 320.
doi: 10.1007/s10884-004-2782-x |
24 |
RABINOWITZ P H . Some global results for nonlinear eigenvalue problems[J]. Journal of Functional Analysis, 1971, 7 (3): 487- 513.
doi: 10.1016/0022-1236(71)90030-9 |
25 |
NISHIURA Y . Global structure of bifurcating solutions of some reaction-diffusion systems[J]. SIAM Journal on Mathematical Analysis, 1982, 13 (4): 555- 593.
doi: 10.1137/0513037 |
26 |
TAKAGI I . Point-condensation for a reaction-diffusion system[J]. Journal of Differential Equations, 1986, 61 (2): 208- 249.
doi: 10.1016/0022-0396(86)90119-1 |
[1] | 杨丽娟. 一类带参数四阶边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(9): 35-41. |
[2] | 阳忠亮, 郭改慧. 一类带有B-D功能反应的捕食-食饵模型的分支分析[J]. 《山东大学学报(理学版)》, 2020, 55(7): 9-15. |
[3] | 李晓燕,徐嫚. 二阶脉冲微分方程Dirichlet问题非平凡解的存在性及多解性[J]. 山东大学学报(理学版), 2016, 51(12): 29-35. |
[4] | 李海侠. 带有保护区域的加法Allee效应捕食-食饵模型的共存解[J]. 山东大学学报(理学版), 2015, 50(09): 88-94. |
[5] | 张露,马如云. 渐近线性二阶半正离散边值问题正解的分歧结构[J]. 山东大学学报(理学版), 2014, 49(03): 79-83. |
|